Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры физико-механические свойств

    Физико-механические свойства поливинилового спирта зависят от его молекулярного веса и содержания ацетатных групп. С повышением молекулярного веса и уменьшением содержания ацетатных групп увеличиваются прочность и теплостойкость полимера. [c.40]

    Как влияет структура молекул полимеров на их физико-механические свойства  [c.274]


    На кинетику полимеризации изопрена, микроструктуру и физико-механические свойства полимера вредное влияние оказывают примеси соединений различных классов. Наиболее сильным каталитическим ядом является циклопентадиен при его содержании в реакционной смеси 0,014-10 моль/л наблюдается значительный индукционный период и замедление всего процесса полимеризации, а при содержании 1,5-10 моль/л катализатор разрушается полностью [47]. При низких концентрациях циклопентадиена не происходит снижения молекулярной массы полимера, при высоких концентрациях молекулярная масса может снижаться в 3—4 раза. [c.213]

    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]

    Модификация диеновых эластомеров не только улучшает технологические и физико-механические свойства смесей и вулканизатов в условиях существующей технологии, но и открывает ряд возможностей в интенсивно разрабатываемых новых процессах получения литьевых композиций и гранулирования каучуков. В первом случае целесообразно исследовать смесь, содержащую высокомолекулярный полиизопрен с функциональными группами и низкомолекулярные жидкие полимеры, при нагревании которой в присутствии сшивающих агентов из маловязкой наполненной системы образуется вулканизат с заданными свойствами, определяемыми в значительной степени присутствием высокомолекулярного полиизопрена. В другом случае может быть использовано частичное структурирование модифицированных полимеров для облегчения их грануляции или совмещение стадий модификации в массе и грануляции [62]. [c.240]

    Особое место в Энциклопедии отведено природным и синтетическим полимерам, физико-механическим свойствам, способам их получения и применения. Описаны каучуки, резина, смолы, пластмассы, пленкообразующие вещества, лаки, целлюлоза, химические волокна и другие. [c.5]


    Олигоэфиракрилаты при последующей радикальной или ионной полимеризации отверждаются с образованием сетчатых полимеров, физико-механические свойства которых зависят от структуры, длины цепи и функциональности исходного олигомера. [c.268]

    Многообразие физико-механических свойств (от жестких до упругих резиноподобных материалов) и сочетание в одном материале противоположных качеств, например, твердости и гибкости ( бронированные полимеры). [c.370]

    Элементный состав олигомеров, мономеров и полимеров Физико-механические свойства органических покрытий (твердость, прочность на удар, изгиб и т. д.) [c.64]

    По другим данным [100], подобный материал изготовляют полимеризацией метилметакрилата в воде в присутствии перекиси бензоила и карбоната магния в автоклаве под давлением при 80—120° С. Молекулярный вес полимера регулируется количеством перекиси бензоила и скоростью повышения температуры. Порошок, пригодный для литья под давлением, получают после вальцевания гранул при 170—190°С в течение 3—5 мин и измельчения листов полимера. Физико-механические свойства полимеров, пригодных для изготовления изделий прессованием и литьем под давлением ТУ-35-ХП-299—61, представлены в табл. 74 [137]. [c.348]

    Абсолютные значения приведенной степени однородности для одного полимера существенного интереса не представляют. Однако, если сравнивать значения 5п различных образцов одного и того же полимера, то оказывается, что чем ниже приведенная степень однородности, тем равномернее полимер по своему молекулярному составу. На рис. 1.26 приведены результаты изучения влияния полидисперсности на физико-механические свойства различных волокон. Уменьшение содержания низкомолекулярных фракций в полимере улучшает комплекс физикомеханических свойств формуемых из них волокон. Содержание этих фракций не должно превышать 3-5%. С увеличением гибкости полимерных цепей влияние молекулярной однородности полимера на физико-механические свойства волокон и пленок возрастает. Увеличение полидисперсности сравнительно гибкоцепных полимеров приводит к резкому ухудшению прочностных, и в особенности усталостных, характеристик волокон. С повышением жесткости макромолекул волокнообразующих по- [c.63]

    Таким образом, требования, предъявляемые к молекулярному строению высокомолекулярных эластомеров с точки зрения получения резин с наилучшим комплексом физико-механических свойств и в то же время высокотехнологичных, являются достаточно противоречивыми. Именно для разрешения этого противоречия во всех практически реализуемых процессах синтеза каучуков необходимо проводить работы по регулированию ММР (или в более общем случае регулированию молекулярного состава) образующихся полимеров с целью их оптимизации. Вопрос о синтезе каучуков с оптимальным молекулярным составом в каждом конкретном случае должен решаться отдельно с учетом существующей технологии переработки и требований, предъявляемых к основным показателям резин. [c.93]

    При механической обработке бутадиен-стирольный каучук растворной полимеризации не деструктирует. Он хорошо смешивается с другими каучуками общего назначения СКИ-3, СКД и др. В связи с узким фракционным составом бутадиен-стирольный каучук растворной полимеризации характеризуется худшими, чем БСК, технологическими свойствами, однако он, в отличие от БСК, может наполняться значительно большим количеством сажи и масла без заметного ухудшения физико-механических свойств. Улучшить способность к переработке бутадиен-стирольного каучука растворной полимеризации можно за счет расширения ММР полимера, введением пластификаторов и другими приемами. [c.279]

    На физико-механические свойства термоэластопластов влияют количество связанного стирола (а-метилстирола), распределение его в полимере, молекулярная масса блоков и их молекулярномассовое распределение, микроструктура полидиенового блока. На примере ДСТ-30 показано, что оптимальными свойствами обладают полимеры с узким ММР центрального и конечных блоков [22]. Наличие примеси двухблочного полимера резко уменьшает сопротивление разрыву термоэластопластов. [c.287]

    При хранении на рассеянном свету полиизобутилен практически не изменяет своих свойств. На прямом солнечном свету и под действием ультрафиолетового облучения происходит частичная деструкция макромолекул, сопровождаемая снижением молекулярной массы и ухудшением физико-механических свойств в массе полимера образуются включения низкомолекулярных фракций. Введение в полиизобутилен очень малых добавок стабилизаторов фенольного типа, а также наполнителей (сажа, тальк, мел, смолы) значительно увеличивает его светостойкость. При комнатной температуре он устойчив к действию разбавленных и концентрированных кислот, щелочей и солей. Под действием концентрированной серной кислоты при 80—100°С полиизобутилен обугливается, а под действием концентрированной азотной кислоты деструктирует до мономера и жидких продуктов. Под действием хлора, брома и хлористого сульфурила подвергается гало-генированию с частичным снижением молекулярной массы. [c.338]


    Физико-механические свойства вулканизатов, их стойкость к старению и воздействию агрессивных сред в значительной степени определяются типом полимера. Например, сопротивление разрыву ненаполненных вулканизатов повышается при увеличении вязкости по Муни и уменьшении непредельности бутилкаучука. Способность бутилкаучука к кристаллизации при растяжении обусловливает получение вулканизатов с высокой прочностью без применения [c.350]

    Физико-механические свойства материалов зависят не только от средней молекулярной массы, но и от вида распределения полимерных цепей по молекулярным массам. При одном и том же значении средней молекулярной массы комплекс эксплуатационных свойств полимера тем лучше, чем уже распределение по молекулярным массам, т.е. чем больше доля полимерных цепей, приближающихся по длине к среднему значению. [c.56]

    Для исследования высокополимерных соединений и процессов их получения существуют различные модификации масс-спектрометрического метода. Одна из них относится к изучению продуктов термического распада полимеров [19], поскольку предполагают, что продукты термической деструкции в глубоком вакууме не претерпевают превращений и сохраняют структуру, отвечающую исходной молекуле. Исходя из этой предпосылки и используя данные масс-спектро-метрического анализа, было доказано, в частности, наличие разветвленных и пересекающихся цепей в молекуле полиэтилена, а также установлены зависимости между строением молекулы полиэтилена и физико-механическими свойствами полимера. [c.11]

    Несмотря на некоторое различие в условиях и рецептурах отверждения вулканизаты полисульфидных полимеров с одинаковой степенью разветвленности имеют близкие физико-механические свойства. [c.566]

    Чистота е-капролактама является важнейшим фактором. Наличие влаги в е-капролактаме в сильной степени препятствует полимеризации вследствие разложения катализатора в ее присутствии. Поэтому перед полимеризацией е-капролактам тщательно высушивают путем барботирования через него инертного газа при температуре выше 100°С или под вакуумом. С увеличением количества катализатора скорость полимеризации возрастает, однако показатели физико-механических свойств полимера значительно ухудшаются уменьшается и его выход. Оптимальная концентрация каталитической системы равна 0,6 мол. % (от количества е-капролактама) при эквимольном соотношении компонентов. [c.82]

    Физико-механические свойства полимеров в вязкотекучем состоянии будут рассмотрены в гл. 4. [c.140]

    Почему волокна и пленки из синтетических полимеров в результате нагревания при + (10- 20) °С в течение 30-50 мин характеризуются меньшей дисперсией физико-механических свойств (прочности, удлинения), чем эти же полимерные материалы без тепловой обработки  [c.160]

    Такая интенсивная зависимость ло = / () обусловливает необходимость ограничения молекулярной массы волокнообразующих полимеров. Несмотря на существенное улучшение физико-механических свойств полимерных материалов (нитей, пленок и др.) при увеличении Му,, возрастание ло расплавов [c.198]

    Для решения вопросов производства резинотехнических изделий (РТИ) и выбора резин для конкретных изделий необходимо оценивать их физико-механические свойства. Количественные закономерности свойств полимеров значительно сложнее, чем для металлов, так как они должны учитывать фактор времени. Изучение свойств резин базируется на анализе четырех основных параметров деформации е, напряжения ст, температуры Т и времени Если для упрощения принять два параметра постоянными и следить за соотно-щением двух других, то возможны шесть различных видов испытаний  [c.42]

    В зависимости от числа атомов серы в составе элементарного звена различают тетрасульфндные н дисульфидные полимеры. Физико-механические свойства полимера определяются как строением органического радикала, так и числом атомов серы в полисульфид ном звене. Все тетрасульфидные полимеры, независимо от строения органического радикала, — эластичные материалы. Дисульфидные полимеры обладают эластическими свойствами, если в органическом радикале содержится четыре и более атомов углерода. [c.272]

    Бутадиен-стирольные латексы — наиболее массовый тип синтетических латексов. Они выпускаются в широком диапазоне соотношений мономеров и концентраций. Варьируя соотношение мономеров, можно значительно менять физико-механические свойства полимера. Наиболее многотоннажным является производство бутадиен-стирольных латексов для пенорезины. Их получают низкотемпературной (5°С) полимеризацией бутадиена со стиролом в отношении 70 30 (СКС-ЗООХ). После отгонки непрореагировавших мономеров их подвергают агломерации (или соагломерации с полистирольным латексом) и затем концентрируют. Так получают латексы СКС-С и СКС-С-30. [c.603]

    Простые олигоэфиры лигносульфонатов могут найти широкое использование. Одним из таких путей является получение на их основе пенополиуретанов (ППУ). Для этого в высушенный под вакуум ПОЭ вводится вспениватель, например полиизоцианат. Процесс протекает в три стадии. На первой — время старта — фиксируется образование ячеистой структуры и увеличение ее объема, на второй — время гелеобразо-вания — появление тянущихся нитей, и на последней — время конца вспенивания — прекращение увеличения объема массы и образование сшитого полимера. Физико-механические свойства полученного таким путем продукта соответствуют требованиям к пенополиуретанам данной плотности. [c.296]

    Физико-механические свойства полимеров. Физико-механические свойства полимеров сильно зависят от их внутреннего строения. Большое значение для механических свойств имеет форма макромолекул. Различают полимеры 1) линейные, макромолекулы которых можно рассматривать как длинные нити, сравнительно мало связанные друг с другом 2) пространственные, или сетчатые, молекулы которых представляют собой своеобразный каркас. Примеры линейных полимеров описанные ранее полиэтилен, полипропилен, певулканизованный каучук. Пример полимера с пространственной структурой молекул — вулканизованный каучук. [c.336]

    По своим свойствам феноло-лилниновый полимер близок к иоволачному феноло-формальдег.идному полимеру. Физико-механические свойства пресс-порошков, получаемых на его основе, почти не уступают обычным новолачным пресс-порошкам, в частности в отношении скорости преасования. Некоторым недостатком феноло-лигниновых полимеров является их большая вязкость в расплавленном состоянии (что ведет к плохой пропитке наполнителя и требует более высокой температуры при вальцевании), а также некоторая хрупкость изделий при их механической обработке. Важным преимуществом этих полимеров является их высокий выход (до 20 /о к весу фенола), что дает значительную экономию фенола и формальдегида. [c.37]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Наиболее широкое применение получили жидкие полимеры или жидкие тиоколы на основе ди(р-хлорэтил)формаля, выпуск которых составляет 80% от общего производства полисульфидных полимеров. В последние годы с целью расширения ассортимента жидких полисульфидных полимеров как в СССР, так и в СИГА проводятся исследования ио модификации жидких тиоколов и созданию новых материалов. Получен тиоуретановый эластомер, характеризующийся лучшим комплексом физико-механических свойств и более высокой адгезионной прочностью по сравнению с вулканизатами обычных жидких тиоколов [2, 3]. В США разработан способ получения полисульфидного полимера с повышенным содержанием серы в цепи с концевыми гидроксильными группами, а также полимер с концевыми меркаптанными группами на основе полипроииленоксида [4]. [c.552]

    Микроструктура полиизопрена оказывает решающее влияние на физико-механические свойства резин на его основе. Прочность ненаполненных вулканизатов минимальна при суммарном содержании 1,2- и 3,4-звеньев 20—60% (рис. 3) [13]. Скачок на кривой (см. рис. 3) обусловлен прежде всего возможностью плотной упаковки регулярно построенных макромолекул и кристаллизации их в условиях деформации. Следует отметить, что полимеры с высоким содержанием 1,2- или 3,4-звеньев характеризуются очень малыми значениями эластичности (рис. 4). При содержя--нии 1,2- и 3,4-звеньев близком к 100% как каучук, так и вулканизаты на его основе сильно закристаллизованы. [c.203]

    Модификация ДСТ-30 с помощью окиси и двуокиси углерода позволила получить полимеры с карбоксильными и сложноэфирными группами в бутадиеновой части. При введении в модифицированный термрэластопласт окисей и гидроокисей металлов достигается увеличение тепло- и температуростойкости при сохранении вязкотекучих свойств, достаточных для осуществления экструзии материала [27]. Созданием композиций на основе термоэластопласта обычно преследуют цель снизить е.го стоимость, поэтому вводят такие материалы, как масла, различные смолы, мел и т. д. Однако модификация бутадиен-стирольного термоэластопласта хлоропреновыми, бутадиен-нитрильными каучуками и друсими высокомолекулярными добавками позволяет улучшить их масло- и бензостойкость, адгезию и снизить температуру переработки без существенного снижения физико-механических свойств [28]. Из композиций на основе бутадиен-стирольных термоэластопластов изготовляют формовые изделия, резиновую обувь, пластины, покрытия для полов, листы для печатных матриц, спортивные товары (ласты, маски, тенисные мячи), кожухи для оборудования и приборов, эластичную тару и др. [c.290]

    Особенность строения получаемых таким методом полимеров заключается в том, что в концевые фрагменты полимерной цепи встроены уретановые мостики, наличие которых обусловливает ряд интересных свойств полимеров. Уретанфункциональные полимеры обладают более высокими физико-механическими свойствами, чем соответствующие полимеры, не содержащие, уретановых фрагментов проявляют аномальное поведение при течении и в процессе реакции структурирования, о чем более подробно будет сказано ниже. [c.432]

    Исследовано влияние различных углеродных саж на физикомеханические свойства вулканизатов НМПБ. Введение любых тонкодисперсных углеродистых саж в состав смеси приводит к усиливающему эффекту — повышению физико-механических свойств вулканизатов. Оптимальным типом усиливающих саж для этого полимера является сажа HAF и ISAF. [c.453]

    Действие антиоксидантов сводится к ингибированию окислительных процессов, происходящих при тепловых воздействиях на полимер. По данным ВНИИВ, наиболее эффективными стабилизаторами поликапролактама являются динафтил-п-фени-лендиамин и фенил-п-нафтиламин. Стабилизированное волокно капрон по своим физико-механическим свойствам не уступает аолокну анид, как это следует из таблицы 103. [c.343]

    Физико-механические свойства крсмиийорганических смол остаются почти неизменными в широком интервале температур, от —80 до 200—300° С. Благодаря наличию неполярных боковых групп кремнийорганические полимеры, как правило, гидро-фобны. [c.405]

    Пр 1 эксплуатации изделий на основе полимеров часто происходит постепенное ухудшение их свойств, связаное с ггм, что в результате воздействия различных факторов происходит распад макромолекул (деструкция). Помимо ухудшения физико-механических свойств наблюдается снижение химической стойкости полимеров. Указанное яв-леиив носит название "старение.  [c.33]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    По мере повышения содержания хлора н полиэтилене pe. к() изменяются его физико-механические свойства. При хлорировании полиэтилен постепенно начинает утрачивать присущую ему кристалличность и становится высокоэластичным н каучуко-иодобным полимером, по свойствам напоминающим поливинн. -хлорид, содержащий большое количество пластификатора. По мере увеличения содержания хлора и снижения степени криста,I-личности полимера его эластичность возрастает, достигая максимума при 15—20%-ном содержании хлора, одновременно умень-П1ается и прочность полимера. Минимальная прочность хлорированного полиэтилена соответствует. 35—38%-ному содержанию хлора (рис. 70). При еще большем содержании хлора полимер [c.220]

    Деструкция поливинилхлорида нгзб.лю. ается и при действии солнечного света. При температуре ниже 100 -120" скорость отщепления хлористого водорода настолько мала, что физико-механические свойства иолимера остаются практически неизмененными. При бо. 1ее высокой температуре распад полимера ускоряется и полимер приобретает хрупкость. [c.264]

    Орто- и пара-кре.золы также вступают в реакцию с формальдегидом. Образующиеся полимеры имеют линейную структуру, иизкий молекулярный вес и потому легко растворяются в орга нических растворителях и не утрачивают термопластичности. Поскольку извлечение л-крезола из смеси изомеров связано со значительными трудностями (вследствие близости температур кипения изомеров), для промышленных т елей применяют резолы, получаемые из смеси изомеров крезола (трикрезол). Трикре-зол, реагируя с формальдегидом, образует резит только в том случае, если количество ж-крезола в смеси изомеров не менее 40"п Такой полимер по физико-механическим свойствам не уступает феипло-формальдегидному резиту. [c.381]


Смотреть страницы где упоминается термин Полимеры физико-механические свойств: [c.255]    [c.255]    [c.114]    [c.343]    [c.5]    [c.49]    [c.51]    [c.63]   
Курс общей химии (1964) -- [ c.336 , c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимеро

Полимеры механические свойства

Физика полимеров

Физико-механические свойства



© 2025 chem21.info Реклама на сайте