Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз при контролируемой величине потенциала

    Электролиз при контролируемэм пэтенциале катода. Как упоминалось выше, при обычном электролизе медь и висмут разделить нельзя. Это связано с тем, что при электролизе 1 н. раствора сульфата меди первоначальный потенциал + 0,34 в при уменьшении концентрации этого раствора до —10 моль/л падает до 4 0,14 в. При этом потенциале на электроде начинает выделяться висмут, нормальный потенциал которого +0,16 в. Таким образом, в конце электролиза происходит уже выделение смеси меди и висмута. Этот недостаток можно устранить, если проводить электролиз при контролируемор. потенциале катода. Если в процессе электролиза непрерывно контролировать величину катодного потенциала (о методе измерения потенциалов сказано в гл. XI), то можно, изменяя силу тока, протекающего в цепи электролизера, поддерживать такой постоянный потенциал (например, +0,23 в), чтобы выделение висмута не начинались. В результате вся медь будет полностью выделена до начала выделения висмута. Таким образом можно электролитическим путем разделить металлы с достаточно близкими потенциалами выделения. Некоторые установки для электролиза с контролем катодного потенциала снабжены автоматическими устройствами, поддерживающими заранее заданный потенциал в процессе всего электролиза. [c.313]


    Электролиз с ртутным катодом. Этим способом можно отделить от кальция большое число различных элементов. Чтобы кальций количественно остался в растворе, надо контролировать величину катодного потенциала. [c.807]

    При проведении обычных электрогравиметрических определений ячейку для электролиза подключают к источнику напряжения (аккумулятору и потенциометру) и поддерживают определенное напряжение или силу тока. Падение напряжения в электролите и анодное перенапряжение, величина которого зависит от плотности тока, действуют таким образом, что напряжение электролиза не однозначно определяет потенциал рабочего электрода, от которого, собственно, зависит протекание желаемой электрохимической реакции. Поэтому при процессах разделения полезно контролировать потенциал рабочего электрода и устанавливать его, регулируя приложенное [c.148]

    Лингейн [1] классифицировал кулонометрические методы в соответствии с тем, какой из параметров — ток, полное приложенное напряжение или потенциал рабочего электрода — контролируется в ходе электролиза. При контролируемом токе потенциал рабочего электрода будет соответствовать изучаемому электродному процессу только до тех пор, пока в растворе присутствует достаточное количество электроактивного вещества для переноса приложенного тока. Когда концентрация электроактивного вещества уменьшается, потенциал рабочего электрода изменяется до величины, которая допускает протекание какого-то другого процесса электролиза, поддерживающего полный приложенный ток. [c.10]

    Как известно, обратимость электрохимической стадии, о которой в методе циклической вольтамперометрии судят по форме и положению анодно-катодных пиков, принадлежащих какой-либо окислительно-восстановительной паре, зависит от условий электролиза, т. е. эксперимента [68]. Если один из компонентов редокс-пары является неустойчивой частицей, то для наблюдения за обоими пиками подбирают соответствующую скорость изменения потенциала или время электролиза. Если электродная реакция контролируется одновременно диффузией и переносом заряда, то разность потенциалов анодного и катодного пиков АЕр зависит от степени обратимости процесса, т. е. от отношения скоростей переноса электрона и развертки потенциала поляризации электрода. Если скорость электрохимической стадии велика, а величина V относительно мала, то процесс обратим и АЕр равно 58/и мв. В противном случае электрохимическая стадия необратима, и разность потенциалов анодно-катодных пиков превышает эту тео- [c.33]


    Наиболее успешным методом борьбы с подземной коррозией свинца (как с покрытием, так и незащищенного) является катодная защита, которая при правильном применении обеспечивает надежную защиту металла на длительное время. Вместе с тем у этого метода есть и свои сложности, которые необходимо всегда иметь в виду. Потенциал поверхности свинца должен постоянно контролироваться, так как слишком отрицательная величина может привести к возрастанию pH, а результирующая щелочная реакция опасна для свинца. В периоды выключения тока защищаемая конструкция будет подвергаться коррозии. Наблюдались, случаи значительной коррозии, вызванной действием едкого натра, образовавшегося при электролизе раствора соли, используемой на улицах, железных дорогах и т. д. [26]. [c.120]

    Для электролитического разделения никеля и кобальта с одновременным определением обоих металлов применяют [994] ртутный катод. Электролитом служит 1 ЬЛ раствор пиридина в смеси с 0,5 М раствором хлорида калия, содержащий 0,2 М сз льфат гидразина. При электролизе контролируют величину катодного потенциала никель выделяется при —0,95 в (по отношению к насыщенному каломельному электроду), а кобальт— при —1,2 в. Количество обоих металлов определяют кулонометрически, применяя водородно-кислородный или весовой серебряный кулонометры или электромеханический интегратор тока. [c.92]

    Следует заметить, что при выполнении электрогравиметриче-ских определений падение напряжения в электролите и анодное перенапряжение, величина которого зависит от плотности тока, действуют таким образом, что напряжение электролиза не однозначно определяет потенциал рабочего электрода. Поэтому при электрохимическом разделении металлов потенциал рабочего электрода необходимо контролировать. Это можно осуществить, применяя в качестве третьего электрода электрод сравнения. [c.547]

    Метод основан на измерении массы вещества, вьщелившегося в тфоцессе электролиза на тфедваригельно взвешенном электроде, обычно платиновой сетке. Электролиз можно доводить либо 1фи постоянной сипе тока, либо щ>и постоянном потенциале. Если заданную величину потенциала электрода контролировать с помощью потенциостата, то можно раздельно ощ>еделять компоненты смеси. Высокая селективность метода становится ясна из уравнения Нернста дпя 10-кратного изменения концентрации 01феделяемого компонента потенциал электрода нужно изменить всего лишь на 0,059 В/п. И следовательно, если условием количественного разделения компонентов смеси считать снижение исходной концентрации в Ю раз, то при равенстве исходных концентраций разделение однозарядных ионов возможно при разности формальных потенциалов порядка [c.195]

    Контроль за величиной приложенного напряжения осуществляют вольтметром Потенциал катода контролируют по каломельному по-луэлементу КЭ. Поскольку в процессе электролиза происходит смещение потенциала катода в сторону более отрицательных значений, может начаться восстановление других имеющихся в растворе веществ. [c.271]

    Для регистрации классических нолярограмм использовали самопишущий электронный полярограф LP-60. Ртутный капельный электрод имел следующие характеристики т 2.3 мг сек, т 3 сек. Ячейка конструкции [9] термостатировалась с помощью термостата U-8 с точностью +0.2°. Основную часть опытов, кроме специально отмеченных, проводили при 20°. Концентрация феноксарсониевых солей 10 г-мол/л. Кислород из исследуемых растворов удаляли током электролитического водорода. Макроэлектролиз осуществляли в электролизе типа [10]. Анодное пространство заполняли 0.1 М. раствором хлористого калия катодное — раствором, содержащим 1 -10 г-мол/л деполяризатора и 0.1 г-мол/л хлористого калия. Поляризацию электродов осуществляли от источника питания УИП-1. Величину тока измеряли миллиамперметром, напряжение на клеммах электролизера регулировали гасящим сопротивлением и контролировали вольтметром типа М-106. Величину потенциала измеряли потенциометром Р-307. Электродом сравнения служил насыщенный каломельный электрод. Коммутированные кривые записывали по II схеме включения [И]. [c.229]


Смотреть страницы где упоминается термин Электролиз при контролируемой величине потенциала: [c.313]    [c.485]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.199 ]




ПОИСК







© 2025 chem21.info Реклама на сайте