Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выбор условий количественного анализа

    Аналитическая химия как ветвь химического знания имеет хорошо разработанную и находящуюся в непрерывном развитии теорию. Главное содержание теории химических методов анализа составляет химическая реакция как средство получения информации о химическом составе вещества, т. е. используемая для целей качественного и количественного анализа. Важное значение имеют тип реакции, условия и способы ее проведения. Особенно широко распространены в аналитической химии реакции в растворах. Теория химических методов анализа включает расчет химических равновесий, протекающих в растворах, в том числе и сложных равновесий, когда в системе возможны одновременно несколько реакций. Критерии для правильного выбора химической реакции и условий ее проведения дают химическая термодинамика и кинетика. [c.8]


    Для количественного анализа в отличие от полуколичественного большей частью применяют внутренний стандарт интенсивности. Элемент сравнения можно специально вносить в пробу (и в эталоны) нри подготовке их к анализу. Следовательно, представляется возможность более строго подходить к выбору стандарта, чем в случае анализа монолитного металла. При выборе элемента сравнения стараются удовлетворить всем условиям гомологичности аналитических линий (стр. 215). В ряде случаев точ- [c.248]

    Выбор условий количественного анализа [c.112]

    Выбор условий хроматографического анализа двух или более веществ имеет целью разделение компонентов в такой степени, чтобы стал возможным количественный анализ состава пробы. Обычно это достигается путем значительного увеличения числа теоретических тарелок и благодаря наличию широкого ассортимента жидких фаз, пригодных для газо-жидкостной хроматографии. В тех случаях, когда на данной колонке не удается достигнуть надлежащего разделения, при выборе новых параметров, обеспечивающих получение желаемого результата, полезно оперировать такими величинами и уравнениями, в которых эффект разделения выражается через эффективность колонки и показатели селективности жидкой фазы. [c.103]

    Методы, основанные на флуоресценции веществ, большей частью разработаны в области органического анализа. В неорганическом анализе они нашли применение сравнительно недавно Флуоресцентный анализ заключается в исследовании света, испускаемого веществом, облучаемым ультрафиолетовыми лучами (обычно длиной волны между 3000 и 4000 А). Используются также и другие средства возбуждения флуоресценции, как, например, рентгеновские и катодные лучи. При использовании этого метода для количественного анализа необходимо тщательно продумать выбор источника возбуждения, светофильтров условий подготовки образца и способа измерения интенсивности флуоресценции. [c.176]

    Наряду с методом выравненных почернений , получившим развитие в работах Хевеши и его сотрудников [1] и в только что описанной серии работ Боровского и Блохина для количественного определения содержания цериевых земель, как показал В. Н. Протопопов [23], может быть без ущерба для точности анализа использован разработанный им приближенный метод определения относительной интенсивности рентгеновских спектральных линий. Напомним, что в основе метода Протопопова лежит предположение о существовании линейной зависимости между почернением линий и их интенсивностью. Для большинства эмульсий это наблюдается в области относительно малых почернений, не превышающих значений порядка 0,7—0,8. Удобным критерием, указывающим на степень правильности выбора условий проведения анализов, является совпадение величины кв—отношения почернений линий вспомогательного Ка1,2-Дублета с теоретическим значением этого отношения. Зависимость величины ошибки анализа Д от ко, полученная Протопоповым экспериментально, показана на рис. 91. [c.179]


    Приведенные выше примеры показывают, что все химические методы количественного анализа характеризуются применением той или другой реакции. Выбор реактива и условий реакции является наиболее важным моментом каждого химического метода анализа. Точность результатов и время, необходимое для этого, зависят главным образом от выбора реактива и условий реакции. [c.16]

    Обработка фотографических материалов. Многие важные свойства фотографической эмульсии, и прежде всего ее контрастность и разрешающая способность, зависят от состава проявителя и условий проявления. В практике спектрального анализа применяется много разных проявителей и используются разные приемы проявления. Выбор наилучших условий обработки фотографических материалов и строгое соблюдение их постоянства совершенно необходимы при проведении количественного анализа. В каждой спектральной лаборатории обычно используют всего 1—2 типа проявителей, свойства которых предварительно тщательно изучают. Только в редких случаях для разных типов фотографических материалов приходится использовать проявители разного состава. [c.166]

    В качестве примера рассмотрим три обычных методики количественного эмиссионного анализа. Рядом с методикой даны замечания, которые поясняют выбор условий анализа или технику его проведения. [c.276]

    Выбор спектрофотометров и условия работы на них при количественном анализе практически такие же, как и при качественном, только значительно больше внимания приходится уделять правильности и воспроизводимости всех операций тщательно промеряют толщину кювет, воспроизводимость ширины щелей, спектрофотометра, воспроизводимость его показаний и т. д. [c.336]

    Успешное решение всех этих и ряда других задач, т. е. достижение высокой точности и воспроизводимости количественных результатов, возможно лишь при правильном выборе аппаратуры, условий проведения анализа и рационального метода количественной расшифровки хроматограмм, а также при исключении или сведении к минимуму возможных погрешностей на каждой отдельной стадии выполнения эксперимента. [c.211]

    Основные требования, предъявляемые к методу газовой хроматографии вообще,— это высокая разделительная способность, малое время анализа, высокая чувствительность и возможность точного количественного расчета хроматограмм. Изменение параметров опыта вызывает различное изменение этих критериев. При стационарной хроматермографии правильный выбор условий опыта также требует компромиссного решения, отвечающего наилучшим образом поставленной аналитической задаче. [c.419]

    Многие аналитические методы количественного анализа объединены в установках рентгеновского анализа под управлением мини-ЭВМ. Хотя точность анализа состава обычно достаточно высокая, исследователь должен представлять, какие методы он использует и какие у них ограничения. Точность анализа зависит от эталонов и выбора рабочих условий (тока, ускоряющего напряжения, рентгеновской линии и т. д.). [c.5]

    Другим, тоже часто используемым методом количественной анализа является метод внутренних стандартов. Он заключаете в сопоставлении оптических плотностей образца на двух частотах на первой из которых поглощение обусловлено анализируемыми атомными группировками, а на другой — средой, состав которой остается постоянным. Этот метод менее удобен тем, что требует близкого расположения аналитической полосы и полосы сравнения, а также малого отличия в их интенсивностях. Некоторые практические рекомендации по выбору условий для повышения чувствительности этого метода можно найти в работе [174], [c.180]

    Другие линии зависят от случайных колебаний условий разряда. Кроме требований в отношении концентрационной чувствительности, выбор линии для количественного анализа зависит также от состава анализируемого материала. Необходимо выбирать такие линии, на которые не накладывались бы линии основного материала, а также других элементов, находящихся в пробе. [c.182]

    ВЫБОР УСЛОВИЙ ДЛЯ ПРОВЕДЕНИЯ КОЛИЧЕСТВЕННОГО СПЕКТРАЛЬНОГО АНАЛИЗА [c.247]

    Воспроизводимость элюционной количественной ТСХ такова, что при анализе 50 мкг вещества элюционные методы обеспечивают стандартное отклонение 2,5—4% (при числе повторных измерений порядка 10) [27]. Однако такая воспроизводимость достигается нри особо тщательном выборе условий эксперимента. При уменьшении размера пробы до 10 мкг воспроизводимость анализа уменьшается до 15% [28]. Для количественного анализа микрограммовых количеств веществ элюционные методы не используют. [c.269]

    Выбор метода количественного определения вольфрама зависит от объекта анализа, от ожидаемого содержания вольфрама в нем, от требуемой точности определения и быстроты выполнения анализа и ряда других обстоятельств. Общепринятым методом определения вольфрама в рудах является колориметрический метод, основанный на восстановлении в кислой среде комплексного соединения вольфрама с роданидом щелочного металла. При этом появляется зеленовато-желтая окраска позволяющая определять вольфрам даже при содержании его порядка 0,1 мг ШОз в 100 мл раствора. Определение вольфрама этим методом получило широкое распространение благодаря целому ряду преимуществ его перед другими методами. Колориметрические определения могут проводиться без всякого специального оборудования и поэтому незаменимы при полевых определениях. С другой стороны, использование современных фотоколориметров позволяет в условиях стационарной лаборатории довести колориметрические определения до высокой степени точности. [c.92]


    При выборе оптимальных условий разделения можно полностью разделить все компоненты, это важно для точного количественного анализа и для выделения веществ в чистом виде. [c.13]

    Изучение характера изменения во времени может дать ценную информацию, касающуюся выбора аналитических пар линий для тех спектральных методов, которые основаны на использовании общего излучения за все время экспозиции. Для спектрографического анализа наиболее подходящими оказываются такие пары линий X я г, для которых наблюдается одинаковый характер изменения X и г во времени. Или, выражаясь точнее, для количественного анализа в большей степени подходит пара линий, для которой величина 1х/1г изменяется во времени меньше всего, т. е. отношение интенсивностей меньше зависит от изменений в условиях возбуждения (например, температуры плазмы, ионного и электронного давления и т. д.). С учетом небольшого изменения этого практического правила его придерживаются и в спектрометрическом анализе. В этом случае вместо максимума интенсивности измеряют суммарную интенсивность линий на некотором участке длин волн (разд. 6.6). Поэтому при изучении изменений отношения интенсивностей линий пары х и г следует принимать во внимание интегральную интенсивность линий для их полных контуров. [c.272]

    Количественный анализ часто проводят сравнивая высоты или площади пиков неизвестных соединений с высотой или площадью стандартных пиков. Описанные выше опыты подчеркивают необходимость правильного выбора рабочих условий. Например, при температуре 4Г. и напряжении 3,5 в колебание напряжения в пределах 0,05 в вызывает приблизительно 5%-ное изменение как высоты, так и площади пика. Такое же колебание при напряжении 5 е практически не влияет на высоту и площадь пика. [c.144]

    Особенно серьезное осложнение при количественном разделении ионов представляют явления соосаждения. Поэтому здесь приходится принимать все доступные меры для уменьшения соосаждения. Так, в 27 и 28 указывалось, что во многих случаях соосаждение может быть значительно уменьшено путем правильного выбора условий осаждения, например порядка и скорости сливания растворов, температуры, концентрации и т. д. В большинстве случаев, однако, достаточно чистые осадки при однократном осаждении получить не удается поэтому при количественных разделениях очень часто приходится прибегать к переосаждению (стр. 124). Конечно, эта операция значительно увеличивает время, необходимое для анализа, так как, во-первых, приходится дважды осаждать, отфильтровывать и промывать осадок и, во-вторых, при определении веществ, остающихся в растворе, необходимо исследовать раствор, получаемый путем соединения обоих фильтратов с соответствующими промывными водами, т. е. имеющий большой объем. [c.148]

    Выбор индикаторов для оценки сноса капель основан на следующих их свойствах а) высокая чувствительность (возможность обнаружения до 0,01 ) б) доступность проведения быстрого количественного анализа в) растворимость в рабочих смесях с минимальным действием на образование и испарение капель г) легкость отличия от природных веществ, составляющих фон д) стойкая или предсказуемая зависимость концентраций в условиях опытов е) умеренная стоимость ж) отсутствие токсичности или ограничений применения со стороны Управления по продовольствию и лекарствам. [c.120]

    При выборе метода и условий выделения добавок и примесей из полимерной матрицы для целей количественного анализа основным критерием правильности подхода является полнота их извлечения (за исключением дискретной газовой экстракции в парофазном анализе полимеров, применяемой для определения летучих примесей). Проще всего доказать полноту извлечения можно, используя стандартные образцы, содержание определяемого вещества в которых известно. Однако для большинства примесей это практически исключено и составляет сложность для ряда добавок, которые могут в процессе получения полимерной композиции и подготовки ее к анализу претерпевать превращения, разлагаться или частично испаряться. [c.236]

    Уравнение (2.21) показывает, что отношение интенсивностей также пропорционально концентрации элемента в пробе. Это основное уравнение методов количественного спектрального анализа. Методы различаются лишь способом оценки относительной интенсивности. При выборе пары линий для количественного анализа руководствуются рядом требований к энергиям возбуждения спектральных линий, их длинам волн и интенсивностям. Выполнение этих требований существенно уменьшает зависимость относительной интенсивности от условий возбуждения. [c.33]

    При рациональном выборе условий работы точность количественных анализов в пламени может быть доведена до 2-3%. [c.53]

    Ионообменная хроматография имеет ряд достоинств, которые делают этот метод очень ценным для разделений в активационном анализе. Методика ионообменной хроматографии весьма проста и допускает частичную или даже полную автоматизацию процесса разделения, что уменьшает трудоемкость анализа и позволяет дистанционное управление в случае сильноактивных препаратов. При правильном выборе условий разделения в ионообменной хроматографии можно быстро получать разделяемые элементы в радиохимически чистом виде, причем в большинстве случаев может быть получено практически количественное выделение (>90%). [c.173]

    В аналитической химии полимеров широко применяют оба метода, иногда их сочетание, используя спектрофотометрию для предварительного изучения спектрофотометрических характеристик химических соединений при выборе условий количественного анализа, который затем выполняется фотометрическим методом с помощью фотоэлектроколориметров. Непосредственное определение веществ в растворах после проведения цветной реакции или без нее обычно осуществляют визуальным или фотоэлектрическим способом. Оба способа требуют сравнения интенсивности поглощения определяемого вещества с рядом этало- [c.23]

    Анализ равновесного пара успешно применяется для определения не только спиртов, но и других токсичных веществ в биологических материалах [54,55]—ацетона, ацетальдегида, анестетиков (эфира, хлороформа, гало-тана), основания амфетамина, галогенированных [56— 58] и ароматических [59] углеводородов, метилмеркап-тана [60] и метилметакрилата [61]. В большинстве случаев при определении летучих веществ в жидких биологических объектах техника и приемы количественного анализа аналогичны рассмотренным выше для этилового спирта. Различия в основном касаются условий газохроматографического разделения, выбора стандарта, температуры установления равновесия и способов дозирования в хроматограф газовой фазы. [c.134]

    В книге изложены математические и физико-химические основы моделей химических реакторов. Рассмотрены модели идеального смешения и идеального вытеснения, диффузионная и ячеистая модели, комбинированные модели, двухфазная модель реактора с псевдоожиженным слоем катализатора, статистические модели. Знач>1тельное внимание уделено физической интерпретации процессов в реакторах, составлению основных уравнений, выбору граничных и начальных условий, качественному и количественному анализу типов моделей. [c.4]

    Главное внимание уделено методике составления математических моделей, дана физическая интерпретация процессов, рассмотрены составление основных уравнений, выбор граничных и начальных условий, качественный и количественный анализ типов моделей и правомерность применения их к процессам в реакторах с различным конструктивно-технологиче-ским оформлением. Такой подход к изложению основных положений математических моделей дает возможность более осмысленно подойти к пониманию их суш ности и исключает формальное применение в практике математического моделирования. [c.5]

    Смысл различия между реальным и живым временами иллюстрирует рис. 5.28. Расположенные через равномерные интервалы тактовые импульсы в точке 9 (рис. 5.29) соответствуют фактически истекшему времени (реальное время). По величине оно, однако, может отличаться от живого действующего времени, которое фактически представляет собой период, в течение которого система не занята обработкой имлульсов. На рис. 5.29 видно, что в показанном временном интервале укладывается 14 импульсов реального времени (точка 9). В течение этого периода импульс задержки цепи контроля мертвого времени (точка //), вырабатываемый комбинацией сигналов от работающих усилителя (точка 6) и многоканального анализатора, ограничивает число импульсов живого времени (точка 10) для того же интервала реального времени только до трех. Влияние такой потери импульсов иллюстрируется на рис. 5.33, где показано, что только при низких скоростях счета (меньше 2000 имп./с) скорости счета на входе многоканального анализатора и главном усилителе равны. По причине, описанной выше, по мере увеличения скорости счета на входе усилителя влияние наложения И мпульсов становится все более ощутимым, особенно при больших постоянных времени усилителя. Поэтому при качественном анализе для достижения желаемого уровня точности, основанного на статистике счета, может возникнуть необходимость производить счет в течение большего периода, чем предполагаемый на основе реального времени. При количественном анализе во всех случаях должно использоваться живое время, поскольку отношения интенсивностей рентгеновского излучения с образцов и эталонов при одинаковых условиях измерения служат исходными данными для всех моделей количественных поправок. Рис. 5.33 демонстрирует также, что увеличение скорости счета на входе усилителя при изменении тока зонда или при перемещении детектора ближе к образцу будет приводить сначала к линейному увеличению скорости счета на входе многоканального анализатора, за которым следует нелинейная область, в которой скорость счета на входе многоканального анализатора растет медленнее, чем на входе главного усилителя. В конечном счете достигается ситуация, когда увеличение скорости счета на входе главного усилителя в действительности приводит к уменьшению скорости счета многоканального анализатора. Дальнейшее увеличение скорости счета приводит по существу к 100%-ному мертво му времени и, следовательно, к общей блокировке системы. Рис. 5.33 иллюстрирует также, что начало различных отмеченных областей определяется выбором рабочих кривых на основе критерия приемлемого разрешения. [c.229]

    Выбор оптимальных условий количественного спектрофотометрн-ческого анализа многокомпонентных смесей, обеспечивающих максимальную воспроизводимость и правильность результатов, зависит от характера спектров поглощения компонентов и степени их перекрывания, от требований к трудоемкости метода (числу используемых Яанал). [c.80]

    Мы написали настоящую книгу с целью восполнить этот пробел. Обоих нас всегда поражает, если не шокирует, что, хотя газовая хроматография по существу используется для проведения количественных анализов, этой темой почти полностью пренебрегают в курсах, книгах, руководствах пли учебниках. Об этом редко говорят на совещаниях, как будто бы калибровка является грязным делом и смертным грехом, а не предметом, заслуживающим научных дискуссий. Мы постарались полностью обсудить все проблемы, связанные с проведением количественного анализа методом газовой хроматографии и в исследовательской лаборатории, и в лаборатории, где проводятся рутинные анализы, и в контроле технологических процессов. Поэтому необходимые теоретические понятия представлены кратко, а различным стадиям получения воспроизводимых и правильных данных посвящены исчерпывающие объяснения. Получение воспроизводимых и правильных данных начинается с выбора подходящей аппаратуры и колонки, продолжается подбором оптимальных экспериментальных условий и тщательной калибровкой и заканчивается использованием правильных мегодик сбора данных и вычислений. Вопросу уменьшения погрешностей [c.7]

    Если же подходящей количественной методики нет, то следует самим подбирать условия опыта. Выбор условий анализа и ап -паратуры подробно рассматривается в специальных учебниках и пособиях по эмиссионному спектральному анализу. Здесь укажем лишь приемы расшифровки применительно к нескольким задачам качественного анализа. [c.225]

    Таким образом, при количественном анализе методом ЯМР возможны два существенно различных метода получения спектрального материала с полным элиминированием ЭО и т > 5 ч- ЮГ , а также методика весовых факторов. Целесообразность использования того или иного метода и выбор конкретных условий регистрации спектров, включая концентрацию парамагнетиков, зависят от спектральных свойств объекта исследования и требуемой точносга и скорости анализа. [c.143]

    При выборе условий получения спектров, пригодных для обнаружения элементов, следует учитывать специфические особенности качественного спектрографического анализа (разд. 5.2.1). Эти условия зависят от того, нужно ли определять общий химический состав неизвестной пробы или необходимо установить только присутствие в ней одного или нескольких элементов. Первый случай относится к общему качественному спектрографическому анализу, в котором благоприятные условия обнаружения создают для больщин-ства элементов. Спектральный анализ является наиболее удобным способом качественного анализа, так как дает более богатую информацию по сравнению с другими аналитическими методами. Оче видно, что такой общий метод анализа не может обеспечить оптимальные условия для всех элементов и для всех анализируемых проб. В то же время именно универсальный характер этого метода позволяет установить компонентный состав неизвестного материала, Чаще всего основное вещество анализируемой пробы известно, например при определении примесей в известняке или доломите или следов элементов в литейном железе. В этом случае можно подобрать более подходящие и благоприятные аналитические условия для данного типа материала и определяемых элементов. Если определяют известные элементы в материале с известным основным компонентом, то можно применить специфические методы анализа, например использовать явление фракционной дистилляции или в качестве источника света — плазму с контролируемой температурой. Эти методы, однако, будут рассмотрены вместе с другими методами количественного анализа, хотя их можно использовать также для качественного обнаружения элементов (разд. 5.2.4). [c.21]

    В области распределительной хроматографии органических веществ важен выбор носителя и подвижной фазы и применение наиболее чувствительного детекционного реагента. Применяют или бумагу (хроматографическую, модифицированную или специально обработанную), или колонки из силикагеля, целлюлозы, крахмала, каучука. Для количественного анализа или измеряют интенсивность пятен, или применяют колориметрию, потенцпо-метрию, полярографию, радиоиндикаторы, активационный анализ и другие методы. Положение и форма пятен имеют важное значение. Положение отдельных иятен, отсчитываемое от линии старта, позволяет дать количественную характеристику выделенного вещества, хорошо воспроизводимую и характерную для него при постоянстве условий опыта. Полученная таким путем константа, величина R , позволяет идентифицировать различные по составу или но их строению химические соединения. [c.199]

    Наибольшее применение в практическом газохроматографическом анализе металлов в виде летучих комплексов нашел экстракционно-хроматографический метод, включающий экстракцию определяемого иона металла из водного раствора раствором соответствующего комплексообразователя в органическом растворителе, отделение органической фазы, удаление избытка комплексообразователя водным раствором щелочи и газохроматографический анализ органической фазы на содержание хелата искомого металла. Преимущество этого метода состоит в его высокой селективности, поскольку уже на стадиях экстракции и промывки щелочью в контролируемых условиях (при определенном pH анализируемого раствора и заданной концентрации щелочи) происходит отделение искомого металла от большинства сопутствующих элементов. Селективность этих стадий может быть еще повышена путем добавления в исходный раствор других комплексообразователей (например, ЭДТА), препятствующих экстракции в органическую фазу мешающих элементов. Чаще всего при правильном выборе условий в органическую фазу количественно переходит только один определяемый элемент и газохроматографический анализ сводится к разделению соответствующего хелата и органического растворителя. Однако при необходимости одновременного определения нескольких металлов применение такой методики может оказаться затруднительным из-за сложности выбора условий опыта, обеспечивающих количественный перевод в летучие хелаты всех определяемых металлов. [c.67]


Смотреть страницы где упоминается термин Выбор условий количественного анализа: [c.6]    [c.17]    [c.107]    [c.4]    [c.91]   
Смотреть главы в:

Анализ полимеризационных пластмасс -> Выбор условий количественного анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный

Анализ условия



© 2025 chem21.info Реклама на сайте