Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сайт клеточный

Рис. 150. Механизм сайт-специфической рекомбинации, ведущей к интеграции ДНК фага "к и клеточной ДНК Рис. 150. Механизм <a href="/info/33360">сайт-специфической рекомбинации</a>, ведущей к интеграции ДНК фага "к и клеточной ДНК

    Для доставки в клетки крупных генетических конструкций (>10 т. п. н.) с помощью эндосом-ного клеточного транспорта, позволяющего избежать лизосомного разрущения ДНК, образуют конъюгат ДНК с другими молекулами. Для этого поли-Ь-лизин ковалентно сшивают с молекулой, связывающейся со специфическим клеточным рецептором, а затем добавляют ДНК. В результате получается компактная, плотно скрученная структура (тор), на внешней поверхности которой располагаются сайты связывания с клеточным рецептором (рис. 21.11). К сожалению, подобный конъюгат, несмотря на свою специфичность, обладает низкой эффективностью трансфекции. Все созданные к на- [c.501]

    Цитоплазматическая мембрана ограничивает размеры клеток. У животных во внешней ее части (так называемой клеточной оболочке) локализованы рецепторы — гликопротеины, принимающие и передающие сигналы вовнутрь клетки. Кроме того, в клеточной оболочке находятся сайты узнавания родственных клеток благодаря им клетки находят и соединяются друг с другом. Оболочка ассоциирована с двухслойной полупроницаемой мембраной, которая селективно отбирает те вещества, которые необходимо пропускать в цитоплазму и элиминировать во внеклеточное пространство. У растений, кроме мембраны, имеется клеточная стенка, пронизанная большим числом отверстий, необходимых для контакта клеток между собой и для обмена веществ. [c.14]

    Другие могут играть роль сигнальных последовательностей, узнаваемых белками к ним относятся промоторы транскрипции, точки начала репликации ДНК, сайты скручивания хромосом, точки прикрепления кинетохоры и другие элементы, необходимые для осуществления клеточных функций. Очень немногие из этих последовательностей охарактеризованы до такой степени, чтобы определенной последовательности могла быть приписана определенная функция. В самом деле, единственная такая последовательность в эукариотическом геноме, некоторые свойства которой известны,-это промотор транскрипции. Если говорить и о вирусных геномах, то имеются также данные о точках начала репликации ДНК. На основе небольшого количества имеющихся данных можно предположить, что сигнальные последовательности такого типа, по-видимому, имеют небольшую длину. [c.298]

    Системы рестрикции II типа обнаружены у очень многих бактерий. Эти системы состоят из двух отдельных ферментов, рестриктазы н метилазы, узнающих одну и ту же последовательность ДНК — сайт рестрикции. Если сайт рестрикции не метилирован, то рестриктаза вносит в него двуцепочечный разрыв. ДНК не подвергается рестрикции, если хотя бы одна цепь метилирована. Такие свойства предохраняют собственную ДНК бактерий от рестрикции собственная ДНК либо полностью метилирована по всем сайтам рестрикции, либо, после репликации, патуметилирована. На полуметилированные сайты рестрикции действует метилаза и метилирует их полностью. Как и прочие клеточные метилазы, метилазы системы рестрикции-модификации в качестве донора метильных групп нс-патьзуют 5-аденозилметионин. В табл. 7 для примера приведены данные о некоторых рестриктазах и метилазах II типа. [c.130]


    Геном млекопитающих содержит несколько разных семейств коротких повторов. Короткие повторы у птиц и амфибий изучены значительно хуже. Число копий коротких повторов, например наиболее изученных повторов Alu-семейства у человека, составляет 3-10 , что соответствует 5—6% массы ДНК клетки. Такие повторы рассеяны по геному и получили название вездесущих. Повторы Alu могут находиться в интронах, на 5 -флангах генов и, наконец, в составе З -нетранслируемого участка мРНК- Нуклеотидная последовательность Alu-повтора гомологична последовательности отдельных участков 7S РНК. Структура 7S РНК достаточно консервативна у позвоночных, а гомологии в нуклеотидной последовательности прослеживаются и с 7S РНК насекомых, Поэтому семейства коротких повторов, присутствующие у разных видов, предшественником которых служила 7S РНК, также могут обладать достаточной гомологией. В то же время семейства коротких повторов, как и длинных, характеризуются видоспецифичностью, обусловленной амплификацией той или иной копии клеточных РНК, которые к тому же могли быть по-разному модифицированы в результате процессинга. Локализация ретропозонов, внедрившихся в отдельные сайты генома у предков млекопитающих, может, по крайней мере, частично сохраняться в процессе дальнейшей эволюции. Например, места локализации Alu-подобного семейства в межгенных про.межутках кластера глобиновых генов оказались достаточно сходными у мышей и приматов. [c.226]

    Еще один возможный механиз.м сохранения информации об активности генов в ходе клеточного деления — это метилирование ДНК- У прокариот метилаза узнает полуметилированный по одной цепи ДНК сайт после репликации и восстанавливает общую картину метилирования. Возможно, сходные механизмы действуют у эукариот. Ряд данных указывают на то, что ингибиторы метилирования ДНК активируют многие гены после одного или нескольких раундов репликации. В растительных клетках метилирование регуляторных участков некоторых генов приводит к их полному выключению на протяжении многих поколений. Это явление трудно отличить от истинной мутации. [c.258]

    Выщепление профага из клеточной хромосомы — это также результат сайт-специфнческой рекомбинации, но на этот раз между участка.ми ВОР и РОВ, которые на.ходятся на концах интегрированной вирусной ДНК (рнс. 149). Особенность реакции выщеп-ления — потребность в дополнительном белке, продукте фагового гена xts. Такая потребность возникает вследствие того, что фаговая интеграза сама по себе слабо взаимолейсгвует с участком РОВ.  [c.284]

    Изменение характера экспрессии генов можно наблюдать в бес-клеточных системах, компонентами которых являются собственно ген, энхансер и специфические регуляторные белки. Оказывается, что энхансер в зависимости от добавляемого белкового фактора может начать вести себя и как негативно действующий глушитель <англ. silen er) экспрессии гена. Негативное действие такого элемента, проявляется при связывании с тканеспецифичным трансдействующим белковым фактором. Подобные элементы с негативными э ектами были обнаружены, например, вблизи генов инсулина I и а-фетопротеина крысы, экспрессия которых наблюдается соответственно в р-клетках поджелудочной железы и в печени, но отсутствует во многих других тканях. Негативное действие глушителей , как и в случае энхансеров, не зависит от положения и ориентации относительно сайта инициации транскрипции. [c.205]

    Для вьщеления специфических гетерологичных белков из клеточных экстрактов и из смесей секретируемых белков можно использовать разные подходы. Один из них основывается на присоединении к клонированному гену - без нарущения рамки считывания - сегмента ДНК, кодирующего короткую аминокислотную последовательность, которая специфически связывается с каким-либо химическим элементом, соединением или макромолекулой. Такую конструкцию встраивают в экспрессирующий вектор между промотором и сайтом терминации транскрипции. Короткая аминокислотная последовательность в составе рекомбинантного белка, синтезируемого в хозяйской клетке, играет роль аффинной метки. В одном случае перед клонированным геном был встроен - без нарущения рамки считывания - сегмент ДНК, кодирующий щесть остатков гистидина (Hisg), спейсерный участок, кодирующий семь аминокислот, и сайт [c.149]

    Живая рекомбинантная вирусная вакцина имеет ряд преимуществ перед неживыми вирусными и субъединичными вакцинами 1) презентация аутентичного антигена практически не отличается от таковой при обычной инфекции 2) вирус может реплицироваться в клетке-хозя-ине и увеличивать количество антигена, который активирует продукцию антител В-клетками (гуморальный иммунитет) и стимулирует выработку Т-клеток (клеточный иммунитет) 3) встраивание генов антигенных белков в один и большее число сайтов генома ВКО еще больше уменьшает его вирулентность. [c.241]

    Сайт-мишень должен находиться в такой области геномной ДНК, которая не кодирует важных белков, чтобы интеграция чужеродной ДНК не повлияла на процессы развития или клеточные функции. Кроме того, существенно, чтобы встраивание трансгена не блокирова то трансляцию соответствующего участка генома. Поиск подобных сайтов ведется непрерывно. [c.422]


    Полученные для всех клеточных линий РГ-панели паттерны (паттерны сохранения, сигнатура) наличия (+) или отсутствия (-) каждого маркера используют для построения РГ-карты. Лод-балл рассчитывают как логарифм отношения вероятности получения конкретного паттерна сохранения двух сайтов к вероятности того, что при облучении эти сайты всегда разделяются разрывом. В отличие от мейотиче-ской рекомбинации, в для частоты радиационных разрывов принимает значения от О до 1 в = О [c.461]

    Фактор как долго может определяться са.мопроизвольно с помощью молекулярного механизма транскрипции и трансляции ДНК для нас же особый интерес представляют факторы сколько и где . Если сайт (т. е. клеточное окружение развивающейся козетки на пути от нервной пластинки к специализированному органу-мишени) влияет на экспрессию гена, то это предполагает ограничение генетической детерминированности организма. В самом деле, имеются доказательства того, что клетки влияют друг на друга в период развития. Это происходит либо при прямом контакте, молекулярный механизм которого не вполне ясен, либо при выделении химических сигналов, называемых факторами роста нервов. Последние мы будем обсуждать в связи с термином трофизм, а механизм прямого контакта будет показан на примере образования и стабилизации синапсов. Следует отметить, что не только генетическая программа определяет окончательную структуру нейрональной сети, существенно также положение отдельной клетки в пространстве и времени. Именно последнее и помогло сделать следующий вывод геном человека содержит >10 генов, а число синапсов >10 (10 ° нейронов, каждый из которых имеет 10 синапсов, см. выше), так что маловероятно (хотя и нельзя считать совсем невозможным вследствие огромного разнообразия антител, продуцируемых ограниченным числом генов), чтобы специфичность каждого отдельного синапса программировалась определенным участком гена. Мы еще вернемся к этому важному вопросу при рассмотрении синаптогенеза, т. е. процесса образования и стабилизации специфических синапсов. Представляется вполне допустимым, что развитие нервной системы контролируется несколькими факторами генетическим, трофи- [c.319]

    На участке ДНК, соответствующем оперону, находятся три структурных гена (z, у и а). Эти гены кодируют р-галактозидазу, гидролизующую лактозу до глюкозы и галактозы, галактозидпермеазу, переносящую лактозу через клеточную мембрану, а также галактозидтрансацетилазу, переносящую ацетильный остаток с ацетил-КоА на галактозу. Кроме структурньгх генов, оперон содержит регуляторные последовательности ген-оператор, примыкающий к З -по-следовательности структурного гена, и ген-регулятор, кодирующий белок-реп-рессор. К гену-оператору примыкает промотор — начальный сайт инициации транскрипции. Белок-репрессор, взаимодействуя с геном-оператором, частично блокирует область промотора. Это препятствует присоединению РНК-поли- [c.471]

    Каждая вирусная частица содержит две копии одноцепочечного РНК-генома, а после проникновения в пермиссивную клетку этот геном переводится в линейную двухнитевую ДНК под влиянием вирусного фермента — обратной транскриптазы. Чтобы интегрироваться в клеточный геном клетки-мишени, линейная ДНК проникает в ядро, где приобретает кольцевидную форму. Интегрированная линейная ДНК-копия ретровирусного генома (провирус) имеет на обоих концах длинные нуклеотидные повторы — LTR (от англ. long termine repeats). 5 LTR несет промотор, с которого начинается транскрипция генов интегрированного провируса 3 LTR-сайт полиаденилирования, где происходит терминация РНК-транскриптов (см. рис. 23). [c.584]

    В системе in vitro используется классический подход проводят очистку всех компонентов и подбирают условия, при которых наблюдается правильная инициация. Правильная инициация определяется как процесс образования РНК, начинающийся в сайте, соответствующем 5 -концу мРНК. В последнее время появилась возможность осуществить это в отношении каждой из трех эукариотических РНК-полимераз. Имеющиеся системы характеризуются различной степенью очистки. В состав некоторых систем входят неочищенные клеточные экстракты, содержащие РНК-полимеразу, в других-фермент добавляют к клеточному экстракту. В дальнейшем эти системы должны быть заменены препаратами, содержащими все охарактеризованные компоненты, и тогда in vitro можно будет сравнивать активности РНК-полимераз из различных тканей и объектов. [c.149]

    Инвариантна ли картина метилирования, или она меняется в зависимости от конкретных условий Отдельные сайты были исследованы в нескольких случаях, в том числе в генах, кодирующих клеточный белок в тандемном кластере рДНК и в последовательности нескольких интегрированных или свободных вирусных геномов. Сайты, идентифицированные с использованием рестриктирующих ферментов,-это лишь некоторые из метилированных последовательностей, но мы полагаем, что их поведение типично для всех таких сайтов. [c.386]

    Большое внимание уделялось тому, каким образом состояние метилирования может передаваться в ряду клеточных поколений или быть изменено. В ДНК половых клеток, например сперматозоидов, каждый ген находится в неактивном состоянии, т. е. метилированы и постоянные сайты (модифицированные во всех тканях), и вариабельные сайты, т.е. те, которые специфически не метилированы в тканях с экспрессируемыми генами. Таким образом, отсутствие определенных метильных групп в активном состоянии представляет собой потерю ранее существовавших модификаций. Мы не знаем, сохраняют ли клеточные гены метильные группы после того, как они перестают экспрессироваться. Критический вопрос, на который хотелось бы получить ответ, заключается в следующем какие последовательности выбираются в качестве мишени для тканеспецифических изменений в состоянии метилирования  [c.387]


Смотреть страницы где упоминается термин Сайт клеточный: [c.225]    [c.282]    [c.283]    [c.285]    [c.104]    [c.130]    [c.225]    [c.282]    [c.283]    [c.489]    [c.48]    [c.123]    [c.207]    [c.424]    [c.425]    [c.461]    [c.489]    [c.506]    [c.62]    [c.504]    [c.130]   
Генетика вирусов гриппа (1986) -- [ c.80 ]

Генетика вирусов гриппа (1986) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Грипп А антигены вирусов сайт клеточный

РНК расщепление сайт клеточный

остатков сайт клеточный



© 2025 chem21.info Реклама на сайте