Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез белка регулируется

    Синтез белка регулируется [c.953]

    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]


    Клетки живых организмов обладают способностью синтезировать огромное количество разнообразных белков. Однако они никогда не синтезируют все белки. Количество и разнообразие белков, в частности ферментов, определяются степенью их участия в метаболизме. Более того, интенсивность обмена регулируется скоростью синтеза белка и параллельно контролируется аллостерическим путем (см. главу 4). Таким образом, синтез белка регулируется внешними и внутренними факторами и условиями, которые диктуют клетке синтез такого количества белка и такого набора белков, которые необходимы для выполнения физиологических функций. Все это свидетельствует о весьма сложном, тонком и целесообразном механизме регуляции синтеза белка в клетке. [c.535]

    Нуклеиновые кислоты-это биополимеры с высокой молекулярной массой, которые переносят наследственную информацию, необходимую для размножения клеток. Кроме того, нуклеиновые кислоты контролируют развитие клеток, регулируя синтез белков. Полимерная цепь нуклеиновых кислот состоит из чередующихся фосфатных и рибозных сахарных остатков, к которым присоединены органические основания. Полимерная молекула ДНК имеет вид двойной спирали, сохраняющей свою форму благодаря водородным связям между органическими основаниями, которые расположены друг против друга в двух цепях спирали во взаимодополняющей последовательности. [c.464]

    Биологическое действие гормонов щитовидной железы распространяется на множество физиологических функций организма. В частности, гормоны регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечнососудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Точкой приложения действия тиреоидных гормонов, как и всех стероидов (см. далее), считается генетический аппарат. Специфические рецепторы—белки —обеспечивают транспорт тиреоидных гормонов в ядро и взаимодействие со структурными генами, в результате чего увеличивается синтез ферментов, регулирующих скорость окислительновосстановительных процессов. Естественно поэтому, что недостаточная функция щитовидной железы (гипофункция) или, наоборот, повышенная секреция гормонов (гиперфункция) вызывает глубокие расстройства физиологического статуса организма. [c.266]


    Исследования Замечника и многих других (см. выше) позволили нарисовать весьма правдоподобную картину той роли, которую РНК играет в биосинтезе белков. Однако зависимость белкового синтеза от скорости синтеза и распада РНК пока еще трудно понять. Так, например, наряду с системами, в которых между скоростью синтеза РНК и интенсивностью белкового синтеза существует, по-видимому, зависимость, известны и такие системы, в которых скорости синтеза белка и РНК как будто не связаны между собой. Печень представляет собой очень своеобразный пример системы, в которой при изменении аминокислотного состава пищи наступают довольно сложные сдвиги в метаболизме РНК. Мы уже упоминали (стр. 111) о том, что при скармливании крысам пищи с недостаточным содержанием белка их печень быстро теряет белки, РНК и фосфолипиды. Следовательно, состав диеты оказывает регулирующее воздействие на метаболизм каждого из перечисленных соединений. В случае РНК оно было подробно изучено в серии опытов, проведенных Манро и его сотрудниками. В первых своих опытах они установили [140], что ног.лощение Р рибонуклеиновой кислотой, по-видимому, зависит от энергетического фонда пищи. Резкие же колебания в количестве съеденного белка не оказывали влияния на включение Р данные эти согласовывались с более ранними наблюдениями других авторов [141]. Казалось бы, эти факты указывают на отсутствие связи между содержанием белка в пище и скоростью синтеза РНК. На первый взгляд это трудно увязывается с теми значительными изменениями количества РНК в печени, которые наступают при сдвигах в белковой диете. Поэтому было необходимо выяснить, каким образом поглощение белка может влиять на количество РНК, не изменяя при этом скорости синтеза. Для этого бы.ти поставлены новые опыты, в которых изменения в обмене РНК и белка были прослежены с помощью Р и 2-С -глицина [142]. Оказалось, что РНК поглощает изотопы независимо от содержания белка в диете только в том случае, ес.ли животных кормят на протяжении всего опыта. Если же крыс после обильной белковой пищи заставляют голодать, то включение Р в РНК падает очень заметно еще сильнее снижается включение глицина в РНК. Исходя из различных данных, можно думать, что это явление [c.288]

    Функции стероидных гормонов необычайно разнообразны. Их влияние обнаруживается практически во всех биохимических системах организма. Стероидные гормоны включаются в клеточные мембраны, изменяя их проницаемость, способствуют разделению цепей ДНК в процессе образования РНК (транскрипции), повышают активность ферментов, участвующих в синтезе белка, регулируют перенос аминокислот т-РНК и т. д. [c.153]

    В связи с тем что стероидные гормоны и другие факторы, вырабатываемые фолликулярными клетками, оказывают влияние на созревание ооцитов, было сделано предположение, что культивирование ооцитов с фолликулярными клетками может повысить их способность к нормальному оплодотворению и последующему эмбриональному развитию. Многие явления внутри фолликула, включая биосинтез стероидов и синтез белков, регулируют гонадотропные гормоны. Поэтому при культивировании ооцитов внутри фолликулов или с фолликулярными клетками гонадотропины должны быть обязательной составной частью среды. [c.210]

    Так же как и во всех дифференцированных клетках и тканях организма, в нейронах и глиальных клетках мозга работает лишь часть генов. Это, с одной стороны, гены, ответственные за продукцию белков, необходимых для обеспечения метаболических процессов, более или менее сходных в разных клетках и тканях, а с другой стороны, гены, участвующие в синтезе белков, регулирующих специфические функции данной ткани. Активность остальных генов, не нужных для функций данных клеток, подавлена. Доля активных генов в каждой данной ткани обычно невелика — менее 10% — и неодинакова в разных клетках и тканях (в большинстве тканей 2 — 4%). В мозге эта доля выше, чем в других органах, что отражает особую сложность его функций. К сожалению, точные значения этих параметров пока не установлены. [c.19]

    Сочетание УАА и УАГ не соответствует какой-либо определенной аминокислоте. Это так называемые бессмысленные кодоны . Однако они не вполне лишены смысла. Синтез белка останавливается, когда работа рибосомного аппарата доходит до бессмысленного кодона. Следовательно, они в какой-то степени могут регулировать длину образующихся полипептидных цепей, хотя не вполне ясно, играют ли они эту роль в ходе нормального синтеза белка. Вопрос о прекращении роста цепи РНК важен, так как от механизма, прекращающего синтез на определенном звене, зависит и функция синтезируемого белка. Имеющиеся данные говорят как будто в пользу предположения, что на молекуле м-РНК все же имеются сочетания нуклеотидов, сигнализирующие о начале и конце синтеза цепи. Процесс считывания нормального кода, т.е. синтез нормального белка, может претерпеть нарушения в результате, например, действия некоторых лекарственных веществ (стрептомицин) или под влиянием мутаций. Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза. Мутации выражаются в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.394]


    Функция основных ядерных белков неясна. Имеются, однако, данные в пользу того, что гистоны в желобках двойной спирали ДНК участвуют в процессах регуляции белкового синтеза, препятствуя транскрипции определенных сегментов цепи ДНК, и регулируют синтез белка [174—176]. К обсуждению этого вопроса мы вернемся на стр. 287. [c.139]

    Успехи в изучении и синтезе белков. Уже первое ознакомление с белками дает некоторое представление о чрезвычайно сложном строении их молекул. На современном этапе развития химической науки еще очень трудно выявить структуры молекул белков. Первый белок, у которого в 1954 г. удалось расшифровать первичную структуру, был инсулин (регулирует содержание сахара в крови). Для этого потребовалось почти 10 лет. Молекула инсулина состоит из двух полипептидных цепочек. Одна из них содержит 21, а другая—30 аминокислотных остатков, В настоящее время осуществлен синтез инсулина. Для получения одной из полипептидных цепочек потребовалось провести 89 реакций, а для получения другой —138. В живых организмах синтез белков происходит очень быстро (иногда почти мгновенно), поэтому ученые настойчиво изучают его механизм. [c.21]

    Рибофлавин участвует в синтезе белков и жиров, в клеточном дыхании, оказывает регулирующее влияние на состояние центральной нервной системы, воздействует на процессы обмена в роговице и сетчатке глаз (на функцию зрения). Оказывает регулирующее влияние на кровеносную систему, на функцию печени, кожи и слизистых оболочек рта [1, 2, 3]. [c.107]

    Только нуклеиновые кислоты можно сравнить с белками по их значению в жизнедеятельности организмов, поскольку нуклеиновые кислоты регулируют синтез белков.) [c.1037]

    Биологическая роль андрогенов в мужском организме в основном связана с дифференцировкой и функционированием репродуктивной системы, причем в отличие от эстрогенов андрогенные гормоны уже в эмбриональном периоде оказывают существенное влияние на дифференцировку мужских половых желез, а также других тканей, определяя характер секреции гонадотропных гормонов у взрослых. Во взрослом организме андрогены регулируют развитие мужских вторичных половых признаков, сперматогенез в семенниках и т.д. Следует отметить, что андрогены оказывают значительное анаболическое действие, выражающееся в стимуляции синтеза белка во всех тканях, но в большей степени в мышцах. Для реализации анаболического эффекта андрогенов необходимым условием является присутствие соматотропина. Имеются данные, сввдетельствую-щие об участии андрогенов в регуляции биосинтеза макромолекул в женских репродуктивных органах, в частности синтеза мРИК в матке. [c.283]

    Нуклеиновые кислоты сосредоточены в ядрах клеток, представленных двумя типами кислот — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК). Их биологическая роль исключительно велика. Они регулируют естественный синтез белков в живых организмах и осуществляют передачу наследственной информации из поколения в поколение. [c.353]

    Нуклеиновые кислоты являются, по-видимому, всеобщим и, вероятно, единственным генетическим материалом. Имеющиеся данные показывают, что гены выполняют свое назначение, регулируя специфичность синтеза белка. Взаимосвязь между нуклеиновыми кислотами и белками при передаче генетической информации изучает быстро развивающийся раздел биологии, занимающий своего рода промежуточное положение между биохимией и генетикой. Относительная простота строения вирусов и бактерий обусловила преимущественный выбор именно таких организмов для большинства работ в этой области. Количество данных, полученных на высших растениях, напротив, ограниченно. [c.461]

    В клетках постоянно Происходит синтез молекул многих сотен различных белков, в том числе и белков-ферментов. Известно также, что каждому виду растения или животного свойственны свои специфические белки, характеризующиеся в первую очередь определенной последовательностью аминокислот в полипептидной цепи. Возникает вопрос, каким образом ъ живых клетках регулируется синтез белков с определенной последовательностью аминокислот, а не образуются случайные сочетания из 20 или более аминокислот, которые находятся в клетках В последние годы ученые значительно подвинулись вперед в решении данного вопроса, и хотя многие детали этого механизма еще неясны, в общей форме этот механизм расшифрован. Проблема воспроизведения специфичности белков широко изучается сейчас с точки зрения переноса информации в биохимических системах. [c.295]

    ФАКТОРЫ, РЕГУЛИРУЮЩИЕ СИНТЕЗ БЕЛКА В БАКТЕРИАЛЬНЫХ КЛЕТКАХ [c.534]

    Сейчас важнейшей в биохимии и биологии является уже не столь проблема специфичности, сколько проблема регуляции синтеза белка, представляющая громадный интерес с практической точки зрения. Ряд серьезнейших заболеваний (например, рак), судя по всему, связан с нарушением регуляторных механизмов биосинтеза белка. Не приходится уже говорить о том, что покрытие интимных сторон этого процесса позволит целенаправленно регулировать белковый синтез в живой клетке. [c.91]

    Функциональные последовательности ДНК в геномах высших эукариот, по-видимому, собраны из небольших генетических модулей по крайней мере двух типов. Блоки кодирующих последовательностей образуют множество комбинаций для синтеза белков регулирующие последовательности рассеяны среди длинных некодирующих участков и контролируют экспрессию генов. Как кодирующие последовательности (экзоны). так и регуляторные последовательности (энхансеры) по размеру обычно не превышают нескольких сот нуклеотидных пар. В геномах происходят разнообразные генетические рекомбинации, обусловливающие возникновение дупликацип и перенос последовательностей ДНК. В некоторых случаях дутщируются целые гены, которые могут затем приобретать новые функции. В результате рекомбинации иногда возникают новые белки, при этом происходит перетасовка экзонов ти изменение экспрессии генов за счет перекомбинации энхансеров. Перестановка последовательностей имеет огромное значение для эволюции организмов, у эутриот она в значительной мере упрощена благодаря прерывистой структуре генов эукариот. Важно также, что гены эукариот подвержены многочисленным активирующим и подавляющим влияниям, которые оказывают на них разные комбинации удаленных от них энхансеров. [c.248]

    Что касается инициации на внутренних участках двухнитевой матрицы, то здесь также нужно различать два основных способа. Во-первых, первичная РНК-затравка может быть образована праймазой (или — реже — ДНК-зависимой РНК-полимеразой). Однако синтез затравки возможен только в том случае, если матрица соответствующим образом подготовлена. Подготовка включает взан.модействие. между вирус-специфическими белками, регулирую-щи.ми инициацию раунда репликации, и специфическими участками инициации репликации ori (от англ. origin — начало) в молекуле ДНК, Напри.адр, с участком оп в ДНК фага >. первично взаимодействует фагоспецифический белок — О, с белко.м О взаи.модей- твует другой фагоспецифический полипептид — белок Р, который свою очередь образует ко.мплекс с одной из клеточных хеликаз — 1родукто.м гена dna В. [c.265]

    ДНК вируса осповакцины — один из самых крупных вирусных геномов — содержит почти 200 т. п. н. и кодирует более сотни белков, синтез которьгх регулируется во вре.мени. Важнейшая особенность транскрипционной системы этого вируса — ее локализация в цитоплазме зараженной клетки. Поэтому транскрипционный аппарат клетки, содержащийся в ядре,. малодоступен для вируса, [c.306]

    Сходным образом осуществляется регуляция О.в. на уровне биосинтеза ферментов. При этом субстрат или продукт р-ции регулирует активность белкового репрессора, подавляющего транскрипцию (синтез матричной РНК на ДНК-матрице) соответствующего оперона (участок ДНК, кодирующий одну молекулу матричной РНК под контролем белка-репрессора). Примером регуляции при помощи положит. прямой связи может служить в данном случае управление расщеплением лактозы. Появление в среде лактозы инактивирует у бактерии Es heri hia oli соответствующий репрессор и тем самым разрешает транскрипцию оперона, кодирующего ферменты, катализирующие расщепление лактозы. Пример регуляции при помощи отрицат. обратной связи - управление биосинтезом гистидина. Избыток гистидина активирует репрессор, ингибирующий транскрипцию оперона, кодирующего ферменты биосинтеза гистидина. Если репрессор и белки, синтез к-рых он подавляет, кодируются одним опероном, то отрицат. обратная связь осуществляется без участия внеш. модуляторов активности репрессора. Аналогичным образом осуществляется регуляция биосинтеза белка на уровне трансляции (синтез белка ка РНК-матрице). Такой механизм регуляции позволяет синтезировать белок в строгом соответствии с потребностью в нем на данном этапе существования организма. [c.317]

    ЭКСПРЕССИЯ ГЕНА, программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков Э. г. включает транскрипцию - синтез РНК с участием фермента РНК-полимеразы трансляцию - синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах, и (часто) посттрансляционную модификацию белков. Биосинтез РНК включает транскрипцию РНК на матрице ДНК, созревание и сплайсинг. Э. г. определяется регуляторными последовательностями ДНК регуляция осуществляется на всех стадиях процесса. Уровень Э. г. (кол-во синтезируемого белка или РНК) строго регулируется. Для одних генов допустимы вариации, иногда в значит, пределах, в то время как для других генов даже небольшие изменения кол-ва продукта в клетке запрещены. Нек-рые заболевания сопровождаются повышенным уровнем Э.Г. в клетках пораженных тканей, напр, определенных белков, в т. ч. онкогенов при онкологич. заболеваниях, антител при аутоиммунных заболеваниях. [c.413]

    Имеются экспериментальные доказательства прямой и опосредованной связи белкового обмена с обеспеченностью организма витаминами, в частности В , В,, В , РР и др. Обмен белков регулируется, кроме того, деятельностью желез внутренней секреции. Гормоны определяют в известной мере направление (в сторону синтеза или распада) и интенсивность белкового обмена. Например, после введения АКТГ и гормонов щитовидной железы наблюдается интенсивный распад тканевых белков. Другие гормоны, в частности СТГ, андрогены и эстрогены, напротив, стимулируют анаболические реакции и способствуют синтезу белка. Введение некоторых гормонов коркового вещества надпочечников вызывает диспро-теинемию и приводит к отрицательному азотистому балансу, что некоторые авторы связывают со стимулированием глюконеогенеза из углеродных скелетов аминокислот (после дезаминирования последних—см. далее). [c.412]

    Биохимические функции. Соматотропин контролирует синтез белка, влияя на транспорт аминоюгслот из крови в мышечные ткани. Кроме того, показано влияние СТГ на процессы транскрипции и образование зрелой РНК. Действие на липидный обмен проявляется в активации липаз за счет их фосфорилирования и, как следствие, в стимуляции липолиза. Отмечено многоплановое влияние СТГ на углеводный обмен. Активация глюконеогенеза, а также ингибирование транспорта глюкозы в клетки под действием этого гормона приводят к гипергликемии и повышенному синтезу гликогена. Соматотропин регулирует процессы роста всего организма. Гипофункция гипофиза, приводящая к снижению синтеза и секреции СТГ, является причиной пропорционального уменьшения роста всех органов человека и животных. [c.148]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Синтез белка у прокариот регулируется главным образом на уровне транскрипции ДНК, т. е. на уровне образования мРНК. Транскрипция группы метаболически связанных между собой генов регулируется путем присоединения (или отделения) особого белка-репрессора к операторному участку ДНК. Оператор и группа связанных друг с другом генов вместе составляют оперон. Транскрипция такой группы генов может индуцироваться специфическим питательным субстратом, например лактозой. Лактоза может связывать репрессор и вызывать тем самым его отделение от оператора. Благодаря этому разрешается транскрипция генов, кодирующих белки, необходимые клетке для использования лактозы в качестве источника углерода и энергии. Некоторые опероны имеют также промоторный участок, содержащий регуляторную частъ-так называемый САР-участок последний предназначен для связывания комплекса, образованного белком, активирующим катаболитный ген (САР), и сАМР. Этот комплекс, формирующийся при отсутствии в среде глюкозы, дает возможность РНК-полимеразе присоединиться к месту инициации транскрипции генов, ответственных за катаболизм лактозы. [c.961]

    Интерферон — это антивирусное вещество, образование которого во многих типах животных клеток стимулируется различными вирусами [140, 141]. Он представляет собой белок с мо.лекуляр-ным весом 30 ООО. Процесс образования интерферона в клетке включает синтез белка и ДНК-зависимый синтез РНК, но не синтез ДНК [150]. Этот процесс во многих отношениях напоминает индуцированный синтез ферментов. Интерферон можно рассматривать как регулирующее вещество, в образовании которого участвует явление дерепрессии (стр. 284). Механизм его действия да.леко не выяснен нредпо.чагается, что интерферон предотвращает репликацию вирусной РНК [142, 143]. [c.161]

    Мы рассмотрим теперь регуляцию биосинтеза белка как в качественно , так и в количественном аспекте. Иными с i вами, i uj попытаемся ответить иа вопрос, какие факторы определяют, сколько именно данного белка должно синтезироваться в тот или иной момент жизни клетки. При рассмотрении этого вопроса нам придется ограничиться в основном данными, касаюи],ими-ся бактериальных систем, поскольку факторы, регулирующие синтез белка, изучались преимущественно на этих системах. [c.532]


Смотреть страницы где упоминается термин Синтез белка регулируется: [c.355]    [c.437]    [c.248]    [c.144]    [c.614]    [c.283]    [c.201]    [c.265]    [c.492]    [c.511]    [c.48]    [c.465]    [c.468]    [c.474]    [c.184]    [c.95]    [c.485]    [c.500]   
Смотреть главы в:

Основы биохимии Т 1,2,3 -> Синтез белка регулируется




ПОИСК







© 2025 chem21.info Реклама на сайте