Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транскрипция молекул РНК

    Эффективность инициации яа разных про.моторах, их сила , существенно различается если с некоторых промоторов инициируется всего одна-две молекулы РНК за период деления клетки, то с других (например, с промоторов генов рибосомных РНК) инициация происходит раз в одну-две секунды. Частота, с которой инициируется транскрипция при насыщающей концентрации субстратов, зависит главным образом от равновесной константы образования закрытых промоторных комплексов и константы скорости превра- [c.138]


    Цикл транскрипции начинается с присоединения РНК-полимеразы к промотору — строго определенному участку ДНК, с которого начинается синтез РНК. Механизм поиска промоторов изучен Недостаточно предполагается, что молекулы РНК-полимеразы при- [c.137]

    БАК может выступать также и в роли репрессора транскрипции. Например, в галактозно.м опероне кроме стимулируемого БАК промотора Р[ и.меется репрессируемый БАК промотор Р- . и два про.мотора перекрываются друг с другом, так что присоединение одной молекулы РНК-полимеразы к промотору Рг препятствует присоединению другой молекулы РНК-поли.меразы к Рг (рис. 92). Присоединение БАК к ДНК мешает связыванию РНК-поли.меразы с Ра и не мешает связыванию с Р,. Поэтому БАК оказывает не только прямое, но и опосредованное активирующее действие на промотор Р]. Блокирование промотора Р-г приводит к усилению транскрипции с Р,, так как обеспечивает беспрепятственное связывание РНК-полимеразы с Р1. [c.150]

    А. Преждевременная терминация транскрипции молекулы РНК, используемая как способ контроля экспрессии гена, называетси [c.178]

    Исследования ряда эволюционно связанных генов, содержащих гомологичные последовательности, позволили сделать заключение, что в эволюции происходили не только утери интронов, но и их приобретения. Механизм этого процесса не ясен- Возможно, вставки интронов происходили на уровне РНК- Если процесс вырезания интрона с помощью реакций трансэтерификации термодинамически обратим (см. гл. 8), то возможно и внедрение линейной молекулы в РНК с помощью реакции, обратной сплайсингу. На образовавшейся РНК как на матрице в результате обратной транскрипции может синтезироваться ДНК-копия, которая затем интегрируется в геном (см. гл. Х[). [c.195]

    Обе цепи в молекуле ДНК имеют противоположную полярность. Это означает, что межнуклеотидная связь в одной цепи имеет направление 5 ->3, а в другой - 3 ->5. Подобная направленность цепей имеет важное биологическое значение при репликации и транскрипции молекулы ДНК. [c.109]

    Возможно, что цитоплазматическая наследственность обусловлена также стойкими изменениями в цитоплазме, связанными с существованием долгоживущих молекул и-РНК или с избирательной транскрипцией молекул -РНК только с генов материнской хромосомы. [c.115]

    ДНК фага Т7 — линейная двухнитевая молекула ( 40 т. п. н.) с прямым концевым повтором длиной 160 нуклеотидов. Инициация раунда репликации происходит внутри молекулы — на расстоянии, примерно соответствующем 15 % длины генома от одного из концов, условно называемого левым. Здесь имеются промоторы, которые узнаются фагоспецифической ДНК-зависимой РНК-полимеразой. Без транскрипции этого оп-района раунд репликации не начинается. Скорее всего РНК, образующаяся при транскрипции с этих промоторов, непосредственно используется в качестве за- [c.277]


    Для понимания принципов биосинтеза нуклеиновых кислот важно представлять, что в природе существует большое разнообразие способов образования молекул ДНК и РНК. Это разнообразие наиболее подробно изучено в случае репликации и транскрипции вирусных геномов. [c.260]

    Анализ кинетики формирования вторичной структуры тРНК. Наиболее удобным объектом для проверки методов предсказания вторичных структур РНК являются транспортные РНК, вторичные структуры которых хорошо известны и экспериментально подтверждены. Рассмотрим для примера процесс образования вторичной структуры предшественника тРНК из Bombix mor i в процессе транскрипции. Молекула предшественника состоит из 98 нукле- [c.215]

    Б. У эукариот почти все гены, кодирующие белки, устроены сложнее. У них последовательности, кодирующие белок (экзоны), прерываются некодирующими последовательностями (интронами). На рисунке это обозначено промежутками между кодирующими участками. Редким исключением (гены без интронов) в высших клетках являются гены, кодирующие гистоны (табл. 5.1), а также псевдогены и функциональные ретрогены, появившиеся в результате обратной транскрипции молекулы мРНК (см. гл. 7). Таким образом, по матрице ДНК создается длинная [c.104]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    Для последовательности U3 схематично представлены элементы инициации транскрипции молекул РНК с провирусной ДНК. Прямыми скобками отмечены участки, необходимые в цис- и транс-положении для жизнедеятельности ретровируса. Ломаной штриховой линией (в) отмечен сплайсируемый район полноразмерной вирусной РНК [c.401]

    В экспериментах по экспрессии трансгенов в растениях первоначально использовали хорошо охарактеризованные конститутивные промоторы ДНК-содержащего вируса мозаики цветной капусты, обеспечивающие транскрипцию молекул 35S и 19S РНК, или промоторы опиновых синтетаз. С развитием исследований стали использовать также регулируемые тканеспецифичные промоторы, например, клубнеспецифичный промотор гена пататина картофеля или промотор гена 8, индуцируемый при созревании плодов томатов. [c.466]

    Генетическая информация передается от родительской клетки к дочерней путем репликации (синтеза) ДНК- Генетическая информация сохраняется в ДНК до тех пор, пока не понадобится, а затем превращается в инструкцию по синтезу белка специфической последовательности в процессе транскрипции. Генетическая инструкция переписывается на полимерную молекулу РНК (мРНК). Она в свою очередь взаимодействует с соответствующими специфическими амииоацил-тРНК, в результате чего происходит последовательное присоединение аминокислот. Перевод генетической информации из РНК в специфическую аминокислотную последовательность называется трансляцией. [c.108]

    Рассмотренные нами структуры отдельных РНК — предшественник РНК-тирозинтрансферазы [5] и прерванная последовательность рибосомальной РНК [6] — были изучены экспериментально при условиях ренатурации. Иными словами, их скручивание произошло при условиях без ограничений в противоположность тому, что можно было ожидать в ходе транскрипции, в которой зарождающийся конец молекулы ограничен, следуя за транскриптазой. Полагают, что кинетика скручивания является достаточно быстрой для того, чтобы следовать за транскрипцией, и поэтому может оказаться, что ограничение, налагаемое на один конец и не позволяющее двигаться свободно, — решающий посредствующий фактор. Экспериментальные данные, подтверждающие такую точку зрения, отсутствуют, но также не ясно, какой должна быть эта посредствующая роль при условии, что вторичная структура высоко-специфична по последовательности аминокислот. [c.528]

    Синтез молекул РНК начинается в определенных местах ДНК, называемы.х про.моторами, и завершается в тер.шнатора.у (рис. 83). Участок ДНК, ограниченный промотором и терминатором, представляет собой единицу транскрипции — транскриптон. В пределах каждого транскриптона копируется только одна из дву.х нитей ДНК, которая называется значащей или матричной. Во всех транс-криптонах, считываемых в одном направлении, значащей является [c.133]


    Транскрипцию генов рибосомных РНК, тРНК и большинства генов, кодирующих белки, обеспечивают молекулы РНК-полимеразы, содержащие главную а-субъединицу (молекулярная масса у Е. oli 70 кД, у Вас. subtilis— 43 кД). На несколько тысяч молекул РНК-полимеразы, имеющихся в бактериальной клетке, приходится примерно тысяча молекул главной а-субъединицы. В меньших количествах имеются минорные а-субъединицы, используемые для транскрипции ограниченного числа генов (см. раздел 3 этой главы). Набор минорных а-субъединиц у разных бактерий неодинаков. По размеру они меньше главной а-субъединицы. Сравнение нуклеотидных последовательностей генов разных а-субъединиц свидетельствует о том, что все они произошли от одного предкового гена. [c.135]

    Этот цикл у бактерий удается целиком осуществить в простой бесклеточной системе, состоящей из ДНК-матрицы и очищенной РНК-полимеразы, без каких бы то ни было дополнительных факторов, Эго не значит, что РНК-полимераз является единственным белком, участвующим в транскрипции. В ней могут участвовать и разнообразные регуляторные белки- Однако роль их вспомогательная они мешают или помогают РНК-полимеразе на тех или иных стадиях цикла транскрипции, которые она осуществляет и в их отсутствие. Поэтому изучение цикла транскрипции изолированной бактериальной РНК-полимеразой позволяет понять не только фер-.ментативные механизмы синтеза молекулы РНК, но, что еще важнее, дает ключ к пониманию механизмов регуляции транскрипции. [c.137]

    Два оператора имеется в галактозном опероне. Один из них располагается в районе —60 п. н. промотора, другой — в районе -г55 (рис. 92). Показано, что связывание репрессора с операторами ие мешает связыванию БАК и РНК-полимеразы с промотором. Поскольку для эффективной репрессии нужны оба оператора, пред-лолагается, что молекулы репрессора, расположенные на операторах, взаимодействуют друг с другом, образуя петлю ДНК- Такая конформация каким-то образом мешает инициации транскрипции. [c.151]

    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    Принципиальной является возможность образования нескольких разных типов мРН К в результате изменения хода сплайсинга одного и того же первичного транскрипта. Для разных генов показаны так называемые альтернативные пути сплайсинга, основанные на использовании разных экзонов одного гена при образовании мРНК-В результате альтернативного сплайсинга зрелые молекулы мРНК, образующиеся при транскрипции одного гена, включающего несколько экзонов, будут различаться набором экзонов, кодирующих отдельные участки молекулы белка. Кроме того, последовательность экзона в ходе одного пути сплайсинга может служить нитроном в ходе альтернативного пути сплайсинга. Таким образом, разные способы экспрессии одного гена могут приводить к образованию [c.182]

    Благодаря использованию большого набора мутаций по промоторам и генам активирующих белков дрожжей удалось выяснить некоторые особенности взаимодействия белков-активаторов с АП, а также характерные свойства этих белков. Белок GAL4 активирует гены, необходимые для катаболизма галактозы. GAL4 связывается с АП, представленной повторяющимися элементами по 17 п. н-Степень активирующего действия пропорциональна числу этих элементов в промоторе. Функция связывания ДНК и активации транскрипции принадлежит разным участкам белка GAL4, который содержит 881 аминокислоту. 73 остатка с N-конца молекулы белка достаточны для обеспечения специфического связывания с ДНК. Эгот участок связывает ионы цинка и содержит характерную структуру — цинковые пальцы , обнаруженные в целом ряде белков, активирующих транскрипцию (см. раздел 4 этой главы). Два других дискретных участка белка, включающих аминокислоты 149—196 и 768—881, достаточны для обеспечения активации транскрипции. Эти участки содержат кислые аминокислотные остатки. По-видимому, в разных активаторных белках эти районы обладают [c.196]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Важный вопрос организации хроматина касается судьбы нуклеосом при транскрипции. Электронная микроскопия интенсивно транскрибирующихся участков хроматина, например рибосомных генов, ясно показывает, что нуклеосом на них нет даже в тех случаях, когда между молекулами РНК-полимеразы, движущимися одна за другой по гену, виден промежуток. Необходимо отметить, Что регуляция активности рибосомных генов осуществляется в клетке путем изменения числа работающих генсв, но не интенсивности транскрипции. Однако промоторы рнбосомных генов всегда находятся в активной конформации (свободны от гистонов). [c.254]

    При подробном изучении этим методом генов теплового шока оказалось, что промоторная область всегда преимущественно свободна от гистонов, а участок транскрипции неиндуцированного гена находится в обычной нуклеосомной конформации. При индукции гистоны сбрасываются с ДНК. а ген покрывается молекулами РНК-полимеразы, идущими одна за другой. Гистоны удаляются с гена в определенном порядке прежде всего теряется гистон Н1, чувствительный к разрушению 30-нм фибриллы, затем, по-видимому, удаляются Н2А и Н2В и последними снимаются НЗ и Н4. [c.255]

    Эта модель структурной динамики транскрипционно активного хроматина не является единственной. Так, в активно транскрибируемом хроматине рибосомных генов гриба Physarum обнаружены развернутые нуклеосомы, в которых гистоны остаются связанными в частично или полностью линеаризованной ДНК нуклеосомы. Зга модель предполагает, что в процессе транскрипции происходит линеаризация ДНК, но РНК-полимераза не смещает молекулы гистонов с транскрибируемых участков. Напомним, что регуляторный белок TFHIA генов 5S РНК шпорцевой лягушки прочно связывается с регуляторным участком, лежащим в транскрибиру--емой области, и не диссоциирует при прохождении РНК-полимеразы III. [c.256]

    Для образования первой затравки на молекуле ДНК SV40 необходимо присоединение к ori вирус-специфического белка — так называемого большого Т-антигена, который выполняет функции хеликазы, Взаи.модействие между ori и специфическими белками создает необходимые условия для синтеза затравки ферментами, которые умеют это делать, обычно праймазой. Однако в некоторых системах (в частности, у того же фага л) требуется дополнительное активирование оп. Эта цель может достигаться, например, тогда, когда в участке ori происходит транскрипция. Для такой транскрипционной активации важен именно сам акт транскрипции, а не ее продукты — РНК или белки. Считается, Что в процессе транскрипции ослабляется связь между комплементарными цепями когда такое ослабление захватывает участок ori. Он становится более доступным для праймазы. [c.265]

    Молекулярный механизм транскрипции — синтез молекул РНК Ка двухнитевой ДНК-матрице при помощи ДНК-зависи.мых РНК-ролимераз — принципиально сходен в вирусных и клеточных [c.289]

    Образование функционально активных молекул РНК помимо собственно транскрипции нередко, включает те или нные пост-транскрипцнонные изменения или, как говорят, процессинг первичных транскриптов. [c.290]


Смотреть страницы где упоминается термин Транскрипция молекул РНК: [c.200]    [c.111]    [c.176]    [c.123]    [c.152]    [c.153]    [c.158]    [c.179]    [c.197]    [c.198]    [c.203]    [c.208]    [c.210]    [c.224]    [c.250]    [c.251]    [c.251]    [c.253]    [c.253]    [c.255]   
Смотреть главы в:

Биохимия Том 3 -> Транскрипция молекул РНК




ПОИСК







© 2024 chem21.info Реклама на сайте