Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соотношение взаимности Онсагера первое

    Поведение систем в нелинейной области имеет ряд принципиальных отличий в сравнении с областью, где действуют линейные соотношения. Во-первых, в системе перестают быть справедливыми соотношения взаимности Онсагера, появляется анизотропия св-в, даже еслн в равновесном состоянии система изотропна. Во-вторых, в то время как равновесные состояния и стационарные состояния вблизи равновесия описываются в терминах экстремумов нек-рых термодинамич. потенциалов, то в областях, сильно удаленных от равновесия, таких потенциалов найти не удается. В-третьих, если вблизи равновесия описание систем в термодинамике проводится через статистич. средине физ. величины, а флуктуации характеризуют спонтанные отклонения от средних, то вдали от равновесия уже флуктуации определяют значения средних. [c.539]


    По характеру зависимости между потоками и силами неравновесная термодинамика делится на две части линейную и нелинейную. Первая изучает неравновесные процессы и состояния, удовлетворяющие линейным уравнениям движения, что обычно имеет место вблизи положения равновесия при небольших градиентах интенсивных параметров системы. Нелинейная термодинамика относится к неравновесным процессам и состояниям, которые находятся вдали от положения равновесия, характеризуются значительными градиентами и описываются более сложными соотношениями. Л. Онсагер сформулировал постулат, названный принципом симметрии кинетических коэффициентов L j), или соотношением взаимности, который позволяет существенно упростить матрицу коэффициентов и тем самым облегчить задачу нахождения последних. Принцип Онсагера утверждает равенство недиагональных кинетических коэффициентов при соответствующем выборе потоков и термодинамических сил в линейных соотношениях, т.е. L j = Lj . Эти равенства, обоснованные Онсагером с помощью статистической теории, предполагают, что неравновесные системы наделены следующим свойством если на поток 1 соответствующий необратимому -му процессу, влияет термодинамическая сила Х , то на поток сила Х, оказывает воздействие с тем же пере- [c.444]

    Величины X, = у, + ш, наз. характеристич. числами. В неколебат. устойчивых системах X, отрицательны и действительны (у, <0, ш, = 0). В этих случаях обычно вместо X, используют времена релаксации т, = 1Д,. Если стационарное состояние достаточно близко к состоянию термодинамич. равновесия (выполняются соотношения взаимности Онсагера, см. Термодинамика необратимых процессов), то все X, действительны и отрицательны (теорема Пригожина). В этом случае система приближается к стационарному состоянию без колебаний. В сильно неравновесных системах X, могут стать комплексными числами, что соответствует появлению колебаний около стационарного состояния. При определенных значениях параметров сильно неравновесной системы (концентраций исходных реагентов, т-ры, давления и т.д.) стационарное состояние может потерять устойчивость. Потеря устойчивости стационарного состояния является частным случаем бифуркации, т.е. изменения при определенном (бифуркационном) значении к.-л. параметра числа или типа разл. кинетич. режимов системы. Имеется два простейших случая бифуркации устойчивого стационарного состояния. В первом случае одно X. становится положительным. При этом в точке бифуркации (X, = 0) исходно устойчивое состояние становится неустойчивым или сливается с неустойчивым стационарным состоянием и исчезает, а система переходит в новое устойчивое состояние. В пространстве параметров в окрестности этой бифуркации существует область, где система обладает по крайней мере тремя стационарными состояниями, из к-рых два устойчивы, а одно неустойчиво. Во втором случае действит. часть одной пары комплексных характеристич. чисел становится положительной. При этом в окрестности потерявшего устойчивость стационарного состояния возникают устойчивые колебания. После прохождения точки бифуркации при дальнейшем изменении параметра количеств, характеристики колебаний (частота, амплитуда и т.д.) могут сильно меняться, но качеств, тип поведения системы сохраняется. [c.428]


    Обратимся теперь к развитой И. Пригожиным нелинейной неравновесной термодинамике, важнейшими составными элементами которой являются, как отмечалось, теория диссипативных систем и теория бифуркаций [43]. К непременным условиям возникновения упорядоченной структуры в диссипативной системе следует отнести, во-первых, наличие обмена с окружающей средой веществом и/или энергией во-вторых, состояние системы должно находиться далеко от положения равновесия, где наблюдается нелинейность термодинамических уравнений движения, нарушение соотношения взаимности Онсагера и принципов локального равновесия и минимума производства энтропии Пригожина в-третьих, отклонение системы от равновесного состояния не может быть представлено путем непрерывной деформации последнего и, следовательно, отнесено к одной термодинамической ветви. Это условие будет соблюдаться в том случае, если малые изменения на входе вызывают большие отклонения на выходе или, иными словами, когда значения градиентов соответствующих термодинамических параметров (температуры, давления, концентрации) превышают критические величины. И, наконец, в-четвертых, организация упорядоченной макроскопической структуры должна быть результатом как случайного, так и детерминистического кооперативного (согласованного, синэргетического) движения микроскопических частиц. [c.91]

    Естественный подход к обобщению идей, объясняющих образование равновесных структур, на неравновесные ситуации состоит в изучении условий, при которых динамические свойства макроск ических систем могут быть описаны потенциальной функцией, играющей роль свободной энергии. Первый ответ на вопрос о том, как происходит самоорганизация в неравновесных системах, был получен в ходе развития линейной термодинамической теории необратимых процессов. Эта теория применима к системам, в которых налагаемые средой связи настолько слабы, что индуцируемые ими термодинамические силы лишь немного отличаются от своих нулевых равновесных значений. При таких условиях между скоростями необратимых процессов и термодинамическими силами существует линейная зависимость. Феноменологические коэффициенты пропорциональности, выражающие эту линейную зависимость, постоянны и удовлет-в()ряют определенным условиям симметрии, известным под названием соотношений взаимности Онсагера, что обеспечивает существование некоторой функции состояния (производства энтропии Р), всюду неотрицательной в пространстве параметров X/ , т. е. [c.27]

    В гл. П1 дается наиболее общее изложение неравновесной термодинамики Онсагера (термодинамики необратимых процессов) для многокомпонентных и реагирующих гидротермодинамнческих систем. После локальной формулировки первого и второго законов выводится уравнение баланса энтропии, играющее центральную роль в теории необратимых процессов. Затем следует полный вывод и анализ линейных законов и соотношений взаимности Онсагера для случая произвольных анизотропных и изотропных сред. [c.27]

    Онсагер первым показал (1931), что его соотношения взаимности для линейных процессов эквивалентны некоторому вариационному принципу, который он назвал принципом наименьшего рассеяния энергии. Такое название oбy JЮBлeнo 1см, что в стационарном случае принцип выражается минимумом введенных Онсатером диссипа 1 ивных функций (функций рассеяния)  [c.266]


Смотреть страницы где упоминается термин Соотношение взаимности Онсагера первое: [c.424]    [c.103]    [c.148]    [c.445]   
Термодинамика (1991) -- [ c.276 ]




ПОИСК







© 2025 chem21.info Реклама на сайте