Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

концевых аминокислот третичная

    Обширное статистическое исследование структуры белков предприняли в 1974 г. П. Чоу и Г. Фасман [98, 99]. Как и в предшествующих аналогичных исследованиях, ставится задача предсказать вторичные структуры (а-спираль, -складчатый лист) и клубковое состояние и на этой основе описать третичную структуру. В стабилизации регулярных форм большая роль отводится пептидным водородным связям, которые и послужили критерием в определении границ вторичных структур в известных конформациях белков. Из частот появлений каждого аминокислотного остатка в а-спиралях (f ), их внутренних витках (faj), складчатых листах (f ) и клубках (f ,) рассчитаны соответствующие конформационные параметры Рц, P j, P и Р .. Метод определения этих параметров исключает учет в явном виде влияния взаимодействий между остатками. Значения Рц оказались близкими значениям s теории Зимма и Брэгга, полученным для поли-а-аминокислот. Из частотного анализа остатков на границах спиральных и -структурных областей найдены характеристики остатков, инициирующих и терминирующих вторичные структуры. Заряженные остатки с наибольшей частотой появляются на N- и С-концах спирали и, как правило, отсутствуют в -структурных областях. Частоты появления остатков на концах спиралей могут быть скоррелированы со значениями параметров инициации Зимма и Брэгга — а. П. Чоу и Г. Фасман предложили механизм свертывания белковой цепи в глобулу, согласно которому спиральная нуклеация начинает зарождаться в центре фрагмента с наибольшими у остатков значениями Р и затем распространяется в обоих направлениях вплоть до спиралеразрывающих остатков с малыми значениями Р [99]. Аналогичным образом происходит формирование -структурных нуклеаций. Авторы считают, что при P > Рц образование -структур становится более предпочтительным по сравнению с а-спиралями. Аминокислоты были классифицированы на две группы, состоящие из шести подгрупп, начиная с сильных а (или )-образуюпщх остатков и кончая a( )-paзpывaющими остатками. [c.258]


    Блок-схема алгоритма расчета третичной структуры белковой молекулы приведена на рис. 7. На получаемые конформации налагались как энергетические, так и геометрические ограничения о-спирали не должны пересекаться (минимальное допустимое расстояние между осями о-спиралей - 3.5 А) концы а-спиралей, соединенных участками полипептидной цепи, не могут расходиться более чем на Мк2.5 А (М - число аминокислот между концами а-спиралей). [c.148]

    Итак, в молекуле гемоглобина мы-различаем первичную, вторичную, третичную и четвертичную структуры. На основании того, что мы уже знаем, мы можем заключить, что пространственная структура новообразованной молекулы белка возникает самопроизвольно, как результат особой последовательности аминокислот, т. е. первичной структуры. Таким образом, последняя предрешает ( предписывает молекуле), где возникнет (и возникнет ли вообще) спиральная структура, где произойдет (и произойдет ли) свертывание и с какой другой молекулой должна объединиться в конце концов данная молекула. [c.41]

    Все это напоминает работу швейной машины. Молекула мРНК шаг ва шагом продвигается вдоль поверхности рибосомы, и в такт ей строится полипептидная цепь. Когда нить мРНК вся пропутешествовала через рибосому и дошла до конца, до последнего кодона, первичная структура полипептида оказывается сшитой . На этом сходство со швейной машиной кончается, так как нить мРНК вовсе не похожа на нитку, скрепляющую сшитые куски ткани (аминокислоты). Напротив, она очень недолговечна и довольно быстро разрушается. Полипептидная цепь, по всей вероятности, остается на рибосоме ( швейной машине ) до своего полного завершения, после чего отделяется и затем уже свертывается, приобретая характерную вторичную и третичную структуру, а в ряде случаев объединяется с другими полипептидными цепями, так что создается четвертичная структура. Лишь теперь можно считать, что ферментный белок готов. [c.70]

    Однако на примере ряда ферментов, и рибонуклеазы в частности, было показано, что не бся молекула, а лишь некоторая ее часть (активный участок) ответственна за каталитическую активность. Так, Ричардс, используя фермент субтилнэи /, расщепил молекулу рибонуклеазы по связи между звеньями 20 и 21 (пептидная связь Ala — Ser), и при этом вторичная и третичная структуры удержали молекулу как целое. Сохранились и ферментативные свойства. Но при хроматографии на кислом ионообменнике короткий пептид из 20 аминокислотных остатков отделился от остальной части. Обе части молекулы были лишены ферментативной активности, однако прн сменгении их активность вновь возникала. У отделенной больпк й части белковой молекулы еще сохранилась способность связывать обычный для рибонуклеазы субстрат ферментативной реакции, но не расщеплять его. П])и гидролизе рибонуклеазы карбоксипептидазой и отщеплении с С-коица трех аминокислот — валина, серина и аланина активность рибонуклеазы не страдает. При гидролизе пепсином разрывается четвертая связь с С-конца и отщепляется кроме валина, серина и аланина еще н аспарагиновая кислота. Тогда остаток рибонуклеазы полностью теряет активность. Подобным же образом устанавливается существенность двух остатков His в положениях 12 и 119. Сказанное имеет целью дать понятие об исследовании структуры белка как фермента. [c.703]


    Миоглобин состоит из одной полипептидной цепи (153 остатка аминокислот) с молекулярной массой 17 ООО Да. Согласно рентгеноструктурному анализу молекула миоглобина является компактной сферической молекулой размером 4,5x3,5x2,5 нм. Примерно 75% остатков аминокислот образуют 8 правых а-спиралей, содержащих от 7 до 20 остатков. Начиная с Л -конца спирали обозначают номером и буквой спирали. Плоскость гема своей неполярной частью (метиль-ные, винильные группы) погружена в гидрофобный карман молекулы миоглобина. Среди гидрофобных аминокислотных остатков по обе стороны плоскости гема находится по одной молекуле гистидина проксимальный гис и дистальный гис Е1 (за счет сближения спиралей Р и Еъ пространстве). Пятая координационная связь железа (Ре ) занята азотом проксимального гис Р%. Шестая координационная связь (координационное положение) остается свободной и экранируется дистальным гис 7. В неоксигенированном миоглобине атом железа на 0,03 нм выступает из плоскости кольца в направлении гис 8. При связывании молекулы О2 с шестой координационной связью железа (оксигенированный миоглобин) атом железа втягивается в плоскость гема и выступает из нее только на 0,01 нм. Таким образом связывание О2 с молекулой миоглобина ведет, во-первых, к перемещению атома железа и, во-вторых, перемещающийся атом железа будет изменять положение проксимального гис /"8, а следовательно, и конформацию а-спирали Ри всей глобулы миоглобина. Для миоглобина (белок в третичной структуре) кривая связывания кислорода имеет форму гиперболы. Парциальное давление кислорода р02 [c.38]

    Сложность этой проблемы иллюстрируется данными о том, как происходит сворачивание белка в живой клетке. Именно здесь видно, что реализации рассмотренных выше физических закономерностей сворачивания происходит способом, отличным от такового in vitro. В самом деле, в клетке микроокружение полипептидной цепи включает рибосомальные структуры, ферменты, белки шапероны и другие факторы, отсутствующие в растворе. Векторный характер синтеза пептида от N- к С-концу приводит к тому, что сворачивание начинается уже на рибосоме в процессе трансляции немедленно вслед за появлением последовательности аминокислот. Связь С-конца с рибосомой обеспечивает возможность формирования а-спиралей и влияет на скорость образования третичной структуры (Spirin А., 1986). Формирование нативной структуры белка в клетке происходит намного быстрее, чем ренатурация белков в растворе. Все это приводит к выводу о том, что сворачивание последовательности в живой клетке происходит не из состояния стохастического клубка, как при ренатурации в растворе, а осуществляется еще на рибосоме без выхода цепочки в окружающую рибосому среду, т. е. котрансляционным способом. [c.253]

    Защищенную аминокислоту вводят в реакционную смесь в виде соли. Для этого необходимо подобрать такое основание, которое давало бы соль, растворимую в органическом растворителе, применяемом при этерификации. Хотя триэтиламмониевые соли дают удовлетворительные выходы этерифицированных защищенных аминокислот, применение третичного амина является причиной одной побочной реакции, которую следует иметь в виду. Хлорметилированный полимер может реагировать с триэтиламином, образуя четвертичные триэтиламмониевые группы на носителе (рис. 4). Эти группы — сильные основные ионообменные центры, и хотя большинство из них в процессе синтеза, вероятно, остается в хлоридной форме, имеются некоторые доказательства того, что небольшие количества защищенных аминокислот могут удерживаться этими группами на полимере. Об этом свидетельствует тот факт, что неочищенный продукт, полученный в конце синтеза, обычно содержит в качестве примеси к нужному пептиду небольшое количество аминокислоты, которую вводили последней. Если вслед за последней конденсацией провести стадию деблокирования с использованием хлористого водорода, то эта свободная аминокислота в неочищенном прр- [c.27]

    Примером химического строения ферментов может служить рибонуклеаза. Первый ферментный белок, первичная структура которого была определена в 1960—1962 гг.,— рибонуклеаза — фермент, катализирующий расщепление рибонуклеиновой кислоты, В 1969 г. осуществлен его химический синтез. Молекулярная масса кристаллической рибонуклеазы равна 13 683. Поли-пептидиая цепь этого фермента состоит из 124 аминокислотных остатков и четырех дисульфидных мостиков, которые, по-видн-мому, связывают между собой отдельные участки. полипептидной цепи рибонуклеазы и поддерживают третичную структуру белка. Концевыми аминокислотами рибонуклеазы являются лизин и валин. Установлено, что каталитическая активность рибонуклеазы зависит главным образом от наличия В ней двух гистидиновых остатков, а молекула фермента свернута таким образом, что эти два аминокислотных остатка — один в начале, другой в конце полипептидной цепи — оказываются в непосредственной близости один от другого. Если блокировать свободную аминогруппу остатка лизина, то также происходит полная потеря каталитической активности фермента. Это свидетельствует о том, что ферментативные свойства рибонуклеазы, а также других ферментов зависят от структуры определенных участков полипептидной цепи и их взаимодействия, т. е. от структуры активного центра фермента. [c.76]



Смотреть страницы где упоминается термин концевых аминокислот третичная: [c.471]    [c.46]    [c.281]    [c.187]    [c.197]    [c.195]    [c.456]   
Химия природных соединений (1960) -- [ c.539 , c.544 ]




ПОИСК





Смотрите так же термины и статьи:

концевых аминокислот



© 2025 chem21.info Реклама на сайте