Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура-энтропия для метана

    ГСССД 18-81. Таблицы стандартных справочных данных. Метан жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 100-1000 К и давлениях 0,1-100 МПа. М., 1982. 11 с. [c.252]

    Из всех углеводородных газов наиболее изученным является метан. В технической литературе приведены таблицы удельного объема, энтальпии, энтропии, изобарной и изохорной теплоемкостей газообразного и жидкого метана от кривой насыщения до температуры 1000 К и давления 100 МПа. В атласе КОРА [40] приведены энтальпийные и энтропийные диаграммы как для индивидуальных углеводородов (от метана до пентана включительно), так и для природных смесей (с относительной плотностью по воздуху 0,7 0,8 0,9 и 1,0) при температуре 273-573 К и давлении до 70 МПа. Предлагаемые в этих работах зависимости рассчитаны на основе р, V, Г-данных и известных термодинамических соотношений, связьшающих калорические и термические свойства веществ. В [41] на основании большого объема исследований впервые даны зависимости изменения теплоты испарения углеводородов от удельного объема. Эти па- [c.194]


    И 3) методами статистической механики (гл. 17) с использованием некоторых сведений о молекулах, полученных из спектроскопических данных (разд. 5.18 Приведенный изобарный потенциал ). Два последних метода особенно важны в случае реакций, протекающих настолько медленно, что непосредственные измерения равновесных концентраций невозможны, или для таких условий, которые трудно создать экспериментально. Например, метан при комнатной температуре представляет собой вполне устойчивое соединение, а углерод и водород заметно не реагируют друг с другом. Поэтому при комнатной температуре невозможно измерить равновесие между этими тремя веществами (т. е. их равновесные концентрации), но константа равновесия может быть рассчитана с помощью абсолютных энтропий и энтальпий образования участвующих в реакции веществ. [c.162]

    Основным источником погрешностей расчета для большей части веществ, свойства которых приведены в табл. 2 и 3, являлись неточности в теплотах образования их из элементов. Однако в ряде случаев [например метан, этан, этен (этилен) и др.] мы знаем тепловой эффект достаточно точно для того, чтобы погрешности в нем не дали существенных ошибок в получаемой в результате вычислений константе равновесия. В этих случаях, чтобы получить надежные результаты, нам необходимо применить вполне надежные и точно рассчитанные зависимости теплового эффекта и энтропии или, что то же, свободной энергии от температуры. Как правило, при такого рода расчетах использование экспериментальных х,анных для теплоемкостей реагирующих веществ не позволяет добиться нужной точности. [c.169]

    Какой газ имеет при одинаковой температуре большую энтропию — неок или метан Объясните ответ, [c.313]

    Кроме того, вблизи температуры плавления константа скорости реакции в твердой фазе не подчиняется простой аррениусовской зависимости. Наблюдаемые закономерности можно объяснить следующим образом кристаллы гексанитроэтана в связи с симметричным строением молекулы относятся к типу так называемых пластических кристаллов, к которым принадлежит, например, и метан. Основной особенностью их являются свободное вращение молекул и относительная легкость обмена местами в решетке, высокая пластичность и деформируемость кристалла уже при малых нагрузках. Это, по всей вероятности приводит к тому, что не проявляется клеточный эффект и не заметно влияния изменения объема при образовании активированного комплекса, что и приводит к постоянству энергии активации. Однако при образовании активированного комплекса может происходить торможение вращения молекул в решетке и вращения по реагирующей связи углерод-азот (в отличие от жидкой фазы [1]) из-за изменения конфигурации молекул в активированном состоянии. В связи с этим происходит изменение энтропии и соответственно этому уменьшение константы скорости. [c.95]


    Рнс. 2. Изменение энтропии различных газов при растворении их в метаноле (температура —45°С) /—водород 2—азот метан этилен —пропилен б —сероводород —двуокись уг-лероаа й—сероокись < —сероуглерод. [c.200]

    Метан (химическая формула СН4) - простейший представитель ряда метановых углеводородов (алканов) с обидей формулой , Y 2n+2 состояпдий из одного атома углерода и четырех атомов водорода. Строение молекулы метана можно представить в виде тетраэдра, в центре которого находится атом углерода, а по углам - четыре атома водорода. Тетраэдрическое строение молекулы метана обусловлено 8р-гибридизацией углеродного атома. Расстояние между атомами углерода и водорода равно 1,09 А, тетраэдрический валентный угол равен 109°. Главное отличие метана от всех других углеводородов - это наличие только связи С-Н, средняя энергия которой составляет 99,3 ккал/моль, и отсутствие углеродных связей С-С. Энергия отрыва первого атома Н еш е выше (104,0 ккал/моль). Отношение числа водородных атомов к углероду в метане составляет 4, в этане - 3, в пропане - 2,66, а в высокомолекулярных парафиновых углеводородах приближается к двум, т.е. метан является самым восстановленным из всех углеводородов. Его нахождение в недрах в восстановительной среде так же закономерно, как углекислого газа в окислительных условиях. Исключительное положение метана в земной коре и повсеместное его распространение можно объяснить еш е и тем, что по сравнению со всеми остальными углеводородами он обладает минимальным уровнем свободной энергии (-12,14 ккал/моль), минимальными значениями энтальпии (теплосодержания, -17,89 ккал/моль) и теплоемкости при постоянном давлении (8,536 ккал/моль град), а также максимумом энтропии (44,50 ед. энтропии). Эти свойства в сочетании с очень низким значением критической температуры (-82,4°С) и высоким значением критического давления (4,58 МПа) (табл. 1.1) ставят метан в особое положение среди остальных углеводородов [1.  [c.5]

    Последний метод имеет особенно большое значение для реакций, не поддающихся прямому измерению, в частности для реакций, протекающих настолько медленно, что непосредственные измерения равновесия лроизвести невозможно. Нанример, при комнатной температуре метан вполне устойчивое соединение, а углерод и водород не реагируют друг с другом. В этих условиях невозможно измерить равновесие между всеми тремя веществами, но константа равновесия может быть рассчитана по абсолютной энтропии и теплоте реакции. [c.232]

    Физическое теплосодерн<ание поступающего газа можно отвести путем теплообмена с холодными потоками процесса но скрытая теплота, выделяющаяся при конденсации примесей, оказывается значительно больше и наиболее удобно отводить ее при помощи кипящих жидкостей. Поскольку энтропия системы возрастает с увеличением разности между температурой конденсации нримесей и температурой кипения хладагента, предпочтительно применять жидкости, температура кипения которых сравнительно близка к требуемой температуре конденсации. В качестве типичных жидких хладагентов, применяемых в процессе, можно указать метан, смеси окиси углерода с азотом и азот. Подробно описан [24] метод расчета применительно к разделению коксового газа процессом дробной конденсации. [c.375]


Смотреть страницы где упоминается термин Температура-энтропия для метана: [c.102]    [c.315]    [c.122]    [c.367]    [c.247]    [c.5]   
Справочник инженера-химика Том 1 (1937) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Энтропия метана

Энтропия от температуры



© 2025 chem21.info Реклама на сайте