Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий охлаждающая способность

    Термальный метод формования мембран заключается в термической желатинизации смеси полимера и соответствующих пластификаторов, например полигликолей. Компоненты смешивают, расплавляют и охлаждают, получая так называемые термальные гели. При этом растворяющая способность пластификаторов, а следовательно, и степень растворения полимера изменяются с изменением температуры. По мере снижения температуры расплава макромолекулы полимера взаимодействуют и образуют гелеобразную структуру. При этом в результате разделения фаз образуются поры. [c.317]


    При исследовании поверхностных структур к вакууму в ионном проекторе предъявляют лишь минимальные требования. Поле приблизительно 4,5 в/А, требуемое для получения хороших ионных изображений с гелием, вообще говоря, достаточно для ионизации любых присутствующих реакционноспособных молекул газа и ускорения их в направлении экрана, прежде чем они смогут приблизиться к поверхности. Поэтому острие, которое само формируется и очищается в процессе десорбции полем, должно оставаться чистым, если его охлаждать жидким водородом для предотвращения миграции примесей по его стержню, не подверженному воздействию поля. При более высоких температурах примеси могут отлагаться на поверхности за счет диффузии. В противоположность этому изучение адсорбционных процессов требует очень высокой чистоты ионного проектора. Точной идентификации поверхностных изменений можно достичь только в том случае, если все посторонние, способные адсорбироваться вещества удалены из колбы проектора. Необычные предосторожности необходимы по следующим причинам  [c.244]

    Перейдем к рассмотрению экспериментов. Нам уже известны свойства плазмы с точностью до порядка величины. При определении термодинамических свойств возможная точность расчета не выходит за пределы 2%. При расчетах коэффициентов переноса точность много хуже. Кроме того, чтобы избавиться от практически непреодолимых математических трудностей, мы ввели при расчетах довольно грубые допущения, обычно принимаемые и в других работах. Мы усредняли многие непостоянные величины, причем это делалось так, что оценить ошибки в конечных результатах невозможно. Возможна ошибка в 2 раза, хотя многие считают используемую нами теорию не такой уж плохой. В какой степени положение может быть исправлено экспериментом Если бы мы имели материал, способный работать при 20 000 К, то все эксперименты были бы чрезвычайно просты. Измерив градиент давления при изотермическом ламинарном течении плазмы в трубе, можно определить вязкость. Эксперименты по теплообмену позволили бы определить теплопроводность и электропроводность, измеряя другие параметры. Из-за отсутствия необходимых для этого высокотемпературных материалов мы воспользуемся другим методом, который, возможно, позволит нам использовать наш теоретический аппарат для предсказания результатов эксперимента. В этом методе в сущности нет ничего нового. Еще до постановки экспериментов по определению вязкости обычных жидкостей (например воды) была принята гипотеза о прямой пропорциональности величины касательных напряжений градиенту скорости. Затем на основании этой гипотезы была получена теоретическая формула, описывающая ламинарное течение в трубе. Совпадение полученных теоретических результатов с экспериментом позволило считать вязкость физической константой, имеющей вполне определенный смысл. Этим же путем следовало бы идти и в случае плазмы, но отсутствие подходящих конструкционных материалов не позволяет осуществить изотермические условия. Тем не менее мы попытаемся воспользоваться этим же методом, ставя простые эксперименты, результаты которых можно предсказать теоретически, а затем попытаемся скорректировать теорию. Оказывается, что лучше всего использовать обычную струю плазмы, получаемую в определенных условиях. В струе плазмы, вытекающей из сопла плазматрона, температура очень сильно изменяется и по длине и по сечению струи. Если же взять трубу и разместить электроды на ее торцах, то осевого градиента температуры быть не должно. Следовательно, задача из двумерной превращается в одномерную. Для получения стационарной дуги необходимо охлаждать стенки трубы водой, поддерживая их температуру постоянной. Для плазмы при атмосферном давлении трудно придумать эксперимент проще. Теперь надо решить, какое вещество использовать в качестве рабочего тела. Конечно, для наших целей не годятся воздух, вода и даже водород, так как в водородной плазме содержится слишком много компонент На, Н, Н+ и е . Если не удастся достигнуть локального равновесия, то необходимо рассматривать по крайней мере четыре независимые группы уравнений с соответствующим числом соотношений для скорости реакций. Лучше с этой точки зрения применить гелий при 6 83 [c.83]


    Гранулы цеолита (0,25—0,5 мм) прокаливают в муфельной печи при 350 °С в течение 3 ч и охлаждают в эксикаторе. Прокаленные гранулы быстро (учитывая гигроскопичность цеолита) засыпают в сухую колонку длиною 2 м. Колонку устанавливают в прибор. Затем адсорбент досушивают в токе гелия при 100 °С в течение 3 ч. Адсорбент в колонке не теряет разделительной способности длительное время. Периодически необходимо проверять его активность по эталонной смеси. [c.60]

    Таулли [315] запатентовал органофильный аэрогель с улучшенной способностью к диспергированию в органической среде. Автор нагревал полученный аэрогель под давлением в присутствии паров спирта, которые могли покрывать поверхность геля этоксигруппами, хотя природа органической добавки в продукте не была ясна. Прозрачные кремнеземные аэрогели с очень низкими значениями кажущейся плотности в области 0,18— 0,35 г/см , согласно данным Тейшнера и др. [316], оказались подходящими при изучении эффекта Черенкова для частиц с высокими энергиями, получаемых на протонном ускорителе. Аэрогели с такими низкими плотностями получали гидролизом этилсиликата в спирте с минимальным содержанием воды с удалением паровой фазы при температуре выше критической. Некоторые разновидности полученных прозрачных аэрогелей имели удельную поверхность 1000 м /г (что соответствует диаметру частиц кремнезема всего лишь 20—30 А), объем пор 18 см г и кажущуюся плотность 0,05 г/см . Смесь, состоящую из метилортосиликата 51(ОСНз)4 в метаноле (10 % по объему), уксусной кислоты с концентрацией 0,175 н. и воды (4 моль воды на 1 моль сложного метилового эфира), нагревали в автоклаве до 250°С (критическая температура СН3ОН равна 242°С). Пары удаляли в вакуумных условиях и охлаждали аэрогель в атмосфере азота. На использование низших спиртов от метилового до бутилового в таком способе был получен патент [317]. [c.741]

    Тот же Дьюар при помощи жидкого воздуха (а тем более при помощи сжиженного водорода) показал возможность достигать наиболее совершенной пустоты в пространствах, из которых уже удален ртутным насосом воздух, когда еще остаются следы воздуха. Если предварительно ввести туда хорошо очищенный и свежепрокаленный уголь, а затем снаружи охладить втот, уголь жидким воздухом, то уголь поглотит остаток воздуха, потому что обладает способностью вбирать в себя газы воздуха. Сосуд с углем можно присоединять сбоку и охлаждать лишь его один. Один грамм хорошо очищенного (промыванием кислотами и прокаливанием в хлоре) плотного угля, напр., получаемого чрез прокаливание скорлупы кокосовых орехов, может поглощать до 180 и даже до 200 куб. см воздуха, измеренного под обыкновенным давлением. Пустота, которая при этом достигается, превосходит ту, какая может быть получена лучшими ртутными насосами. Дьюар, а затем Рамзай показали, что уголь неспособен поглощать гелий даже при температуре жидкого воздуха. [c.486]

    Б заключение бегло осветил С5ЩН0Сть магнитного метода получения самого низкого холода плп, как его часто называют, метода адиабатического размагничивания. Он основан на способности некоторых парамагнитных солей (гадолиния, церия, трехвалентного хрома, двухвалентного. марганца и др.) терять свою тепловую энергию в магнитном поле в результате упорядочения структурных элементов. Это сопровождается уменьшением энтропии, а следовательно, охлаждением. Находящуюся в контейнере (трубке) соль помещают в криостат с жидким гелием, а затем вводят в контейнер некоторое количество газообразного гелия, чтобы обеспечить тепловой контакт соли с гелиевой ванной. Далее подводят лгагнитное поле, и соль изотермически намагничивается. Газ откачивают нз контейнера, и с ним уходит тепло,отдаваемое солью тепловой контакт с жидким гелием размыкается. Отключают магнитное ноле, в результате размагничивания температура соли надает значительно ниже температуры жидкого гелия. Цикл многократно повторяется. В итоге парамагнитная соль без особых трудностей может быть охлаждена до нескольких сотых долей градуса абсолютной шкалы. Как сообщалось в печати, этим путем достигнута температура, отстоящая от абсолютного нуля на 0,0002° Использование ядерного магнетизма сулит в будущем еще большее приближение к абсолютному нулю. [c.155]


Смотреть страницы где упоминается термин Гелий охлаждающая способность: [c.137]    [c.137]   
Техника низких температур (1962) -- [ c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Охлаждающая способность



© 2025 chem21.info Реклама на сайте