Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные структурные типы неорганических веществ

    Основные структурные типы неорганических веществ [c.103]

    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]


    Перечисленные выше структурные типы не исчерпывают все возможные способы размещения атомов в пространстве, однако их вполне достаточно, чтобы вывести основные кристаллохимические закономерности строения неорганических веществ. Кроме того, рассмотренные типы структур позволяют установить взаимные переходы и, следовательно, выяснить как происхождение, так и возможное развитие данной структуры. Так, тип СбС превращается в СаРз, если центры кубов будут заняты через один, и в 2п8, если через один будут заняты атомами углы куба. Вытягивание оси 4-го порядка в октаэдре, т.е. удаление двух атомов, превращает его в квадрат, а разворот на 180° грани октаэдра по отношению к такой же грани, но расположенной по другую сторону квадрата ниже или выше данной, превращает октаэдр в тригональную призму (рис. 8). Мы привели [c.82]

    Вторая часть книги содержит разнообразный материал описательной химии. Основной упор здесь сделан на изложение неорганической химии, которое сопровождается последовательным выявлением периодических закономерностей в свойствах различных типов соединений. Более подробно, чем обычно, рассматривается химия простых анионов и катионов, а также оксианионов различных элементов и их кислородсодержащих кислот на современном уровне изложены основы химии координационных соединений, в том числе вопросы их строения, устойчивости и стереоизомерии. Сравнительно более лаконично подана органическая химия, хотя по существу затронуты все важнейшие стороны этой обширной области химии, включая механизмы органических реакций, химию полимеров и биохимию. В конце книги помещена не совсем обычная для учебных пособий глава, посвященная актуальной теме—связи химии с загрязнением окружающей среды. Во второй части книги постоянно применяются структурные представления, законы химического равновесия и подходы, использующие теоретические воззрения на природу кислотно-основных и окислительно-восстановительных процессов. Благодаря этому описательная химия превращается из несколько монотонного перечисления свойств веществ и наблюдаемых закономерностей их поведения в увлекательное объяснение научных, практических, а нередко и известных из повседневного опыта фактов на базе химических представлений. [c.5]

    Прежде чем приступить к описанию метода ансамблей Гиббса, который оказался весьма плодотворным в равновесной статистической механике, обсудим вопрос о природе сил, действую-Ш.ИХ между ионами. Кроме обычного упражнения, которое показывает, как из квантовомеханической теории вытекает куло-новское взаимодействие между ионами, здесь содержится материал, поучительный с точки зрения анализа природы взаимодействий других типов, представляющих интерес в связи с собственно химическими различиями между ионами разных элементов. Естественным приложением этого исследования является выяснение вопроса о том, существуют ли в расплаве комплексные ионы и какова их природа. К сожалению, характер и объем обзора заставляют нас ограничиться лишь беглым упоминанием основ современной структурной неорганической химии и ее роли в предсказании свойств полиатомных веществ, присутствующих в расплавах. Наряду с этим необходимо подчеркнуть, что для обсуждения основных диэлектрических свойств расплавленных солей потребуются ионные поляризуемости, которые могут быть вычислены квантово-механическим способом. [c.78]


    Кристаллическое состояние характерно для различных классов полимерных материалов, используемых в современной технологии. В этом отношении полимеры, казалось бы, подобны большинству известных низкомолекулярных кристаллизующихся тел типа металлов и неорганических солей. Однако важнейшая особенность химического строения полимеров — существование длинноцепных макромолекул — оказывает во многих отношениях доминирующее влияние на свойства этих веществ. Решающими оказались два фактора — способность полимерных кристаллов к формированию разнообразных высших структурных форм, часто называемых надмолекулярными структурами, и близость по порядку величины размеров основных кристаллических структур и продольных размеров макромолекул, вследствие чего возникает неоднозначность понятий ближний и дальний порядок. Последнее обстоятельство всегда требует установления того, по отношению к каким структурным элементам идет речь об упорядоченности. Следует иметь в виду, что одна и та же молекулярная цепь, часто сохраняющая сегментальную подвижность, может входить в различные элементы структуры, что обеспечивает их относительную подвижность и изменение поведения в результате внешнего воздействия. [c.162]

    Для интерпретации громадного структурного материала в области неорганической химии мы считаем целесообразным выделить основные типы нространственных решёток, каждый из коих присущ структурам большого 1 оличества веществ или задаёт основной мотив более сложных структур. [c.128]

    Другие исследователи в области биологии лрименяли полупроницаемые модельные мембраны, совершенно отличные от ранее описанных. Это так называемые осадительные мембраны. Мембраны этого типа состояли из пористой матрицы из инертного материала, на которой осаждались в основном нерастворимые в воде неорганические соли. Так, Крейг и Хартунг [С25] подробно изучали электрохимические свойства мембран, полученных осаждением ферроцианида меди на упрочненной фильтровальной бумаге. Ландсберг в своих работих использовал осадительные мембраны из ферроцианида меди на основе целлофановых матриц. Свойства ионитовых осадительных мембран из ферроцианида меди изучал Фрейз [F3], который показал зависимость селективности от состава. Мембраны этого типа исследовались также И. Ф. Карповой и А. Н. Долженковой [К8]. Они изучали влияние структурных и электрокинетических свойств соединений, использовавшихся для получения таких мембран. Хирш-Аялон [Н42] применял осадительные мембраны на основе целлофана, которые содержали различные нерастворимые в воде вещества, например оксалат кальция, карбонат кальция и сульфат бария. [c.128]


Смотреть страницы где упоминается термин Основные структурные типы неорганических веществ: [c.427]    [c.427]    [c.252]    [c.66]   
Смотреть главы в:

Общая и неорганическая химия -> Основные структурные типы неорганических веществ

Общая и неорганическая химия Изд.3 -> Основные структурные типы неорганических веществ

Общая и неорганическая химия -> Основные структурные типы неорганических веществ




ПОИСК





Смотрите так же термины и статьи:

Структурные типы

неорганических веществ



© 2024 chem21.info Реклама на сайте