Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновское излучение дифракция

    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]


    При прохождении света через узкую щель происходит дифракция световых лучей, при которой они способны интерферировать, т. е. усиливать или поглощать друг друга. При этом между длиной волны излучения, углом падения лучей и постоянной дифракционной решетки существуют простые соотношения, вытекающие из волновой теории света. Именно эти закономерности и лежат в основе так называемых дифракционных методов изучения структуры кристаллов. В настоящее время применяют два основных метода получения дифракционных рентгенограмм кристаллов порошковый и метод вращения кристалла. И в том и в другом методе используют монохроматическое рентгеновское излучение. Анализ получаемых рентгенограмм не всегда прост, тем не менее удается определить не только размеры и форму элементарной ячейки, но и число частиц, входящих в ее состав. Так, ориентируя кристалл определенным образом, можно установить постоянные решетки,а следовательно, и размеры элементарной ячейки. Зная плотность кристалла, можно рассчитать массу эле- [c.91]

    Исследование края поглощения рентгеновского излучения. Дифракция рентгеновских лучей связана с их упругим рассеянием на атомах кристаллической решетки. Однако даже относительно мягкое рентгеновское излучение частично поглощается веществом за счет электронных переходов и ряда других физических причин, называемых в совокупности неупругими взаимодействиями. Сечение поглощения резко возрастает, когда энергия фотонов становится достаточной для возбуждения эмиссии фотоэлектронов. При [c.211]

    Эта концепция применима к дифракции в кристалле, поскольку кристаллическая решетка может быть описана с помощью набора параллельных плоскостей с различными расстояниями с/ между ними. Если пучок рентгеновских лучей падает на любой набор плоскостей под углом, для которого выполняется соотношение Брэгга, то из кристалла будет исходить единственный вторичный пучок. И на самом деле, когда на монокристалл вещества действует пучок интенсивного рентгеновского излучения, из него в различных направлениях испускаются многие тысячи более слабых пучков или отражений, как это показано на рис. 17.9. Угол между каждым отраженным пучком и падающим пучком излучения определяется расстоянием между рассеивающими плоскостями. [c.375]


    Как можно описать условия для дифракции, исходя из параметров обратной решетки, показано на рис. 17.15, где изображена сетка / О/ моноклинной обратной решетки вместе с падающим пучком рентгеновского излучения, проходящим через начало координат (помеченное точкой [c.380]

    Наличие в жидкости пространственного упорядочения молекул подтверждается и многими другими фактами, в частности экспериментальными данными по рассеянию света, дифракции рентгеновского излучения, нейтронов и электронов. Дебаеграммы жидкостей, изученных при температурах, близких к температурам кристаллизации, сходны с рентгенограммами кристаллов, [c.166]

    ДИФРАКЦИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ [c.113]

    Прохождение рентгеновского излучения сквозь кристаллическое вещество сопровождается отклонением его от первоначального направления. Это явление называется дифракцией рентгеновского излучения. [c.113]

Рис. 56. Дифракция рентгеновского излучения Рис. 56. <a href="/info/142217">Дифракция рентгеновского</a> излучения
    При прохождении любого электромагнитного излучения, в том числе и рентгеновского, через вещество происходит частичное рассеивание излучения. Под действием периодически изменяющегося электрического поля электроны вещества начинают колебаться с частотой, равной частоте падающего излучения.Колеблющиеся электрические заряды становятся источниками вторичного электромагнитного излучения гой же частоты, которое распространяется во всех направлениях и наблюдается как рассеянное излучение. Пучок рассеянного излучения, выбранный в некотором направлении, складывается из волн, рассеянных в этом направлении. Однако в подавляющем большинстве направлений эти волны на фронте рассеянной волны не совпадают по фазе и частично или полностью гасят друг друга, и заметного рассеяния не происходит. Однако при прохождении пучка через периодическую структуру — кристалл в некоторых определенных направлениях рассеянные волны совпадают по фазе и, усиливая друг друга, дают интенсивный пучок рассеянного излучения. Возникновение интенсивного рассеяния рентгеновского излучения по неко-торы.м дискретным направлениям в результате взаимодействия их с периодическими структурами называется дифракцией рентгеновского излучения. [c.160]

    Главной особенностью квантовой механики является ее вероятностный статистический характер она дает возможность находить вероятность того или иного значения некоторой физической величины. Объясняется это волново-корпускулярным дуализмом микромира, т. е. микрообъекты обладают как корпускулярными, так и волновыми свойствами. В отличие от классической физики в квантовой механике все объекты микромира (электроны, атомы, молекулы и др.) выступают как носители и корпускулярных и волновых свойств, которые не исключают, а дополняют друг друга. Не представляет труда обосновать объективность волново-корпускулярно-го дуализма для световых квантов — фотонов. Так, фотоэффект Столетова и эффект Комптона доказывают корпускулярную природу видимого и рентгеновского излучений, а интерференция и дифракция — волновую природу света. Потому для фотонов легко показать единство волны и корпускулы. Действительно, из формул [c.36]

    Поясним суть этого явления на примере дифракции в кристалле хлористого цезия. В качестве элементарной ячейки кристалла хлористого цезия (см. рис. 55) можно выбрать куб, в вершинах которого находятся ионы цезия, а в центре — ион хлора. Рассеяние рентгеновского излучения происходит в результате взаимодействия излучения с электронами, находящимися на внутренних электронных слоях. Число таких электронов у иона цезия существенно больше, чем у иона хлора, и можно в первом приближении рассмотреть рассеяние только на ионах цезия, пренебрегая вкладом в рассеяние ионов хлора. [c.160]

    НИИ, складывается из волн, рассеянных в этом направлении. Однако в подавляющем большинстве направлений эти волны на фронте рассеянной волны не совпадают по фазе и частично или полностью гасят друг друга, поэтому заметного рассеяния не происходит. Однако при прохождении пучка через периодическую структуру (кристалл) в некоторых определенных направлениях рассеянные волны совпадают по фазе и, усиливая друг друга, дают интенсивный пучок рассеянного излучения. Интенсивное рассеяние рентгеновского излучения по некоторым дискретным направлениям в ре зультате взаимодействия с периодическими структурами называется дифракцией рентгеновского излучения. [c.182]

    Для макрообъектов длина волны чрезвычайно мала и волновые свойства не проявляются. Например, в случае частицы массой в 1-10-3 движущейся со скоростью 1 м/с, А,= 10- нм. Другое дело в случае микрообъектов. Например, для электронов с энергиями от 1,60-10- до 1,60-10 Дж (от 1 до 10 000 эВ) длины волн де Бройля лежат в пределах (1н-0,01) нм, т. е. в интервале длин волн рентгеновского излучения. Для них волновая природа обнаруживается достаточно четко.. Первое экспериментальное подтверждение гипотезы де Бройля было получено в 1927 г. в опытах по-дифракции электронов на монокристалле никеля и по дифракции электронов,, движущихся в поле "с ускоряющим потенциалом, на монокристалле никеля и поликристаллических пленках алюминия и золота. В первом случае при напряжении порядка 100—200 В длина волны становилась соизмеримой с раз- [c.46]


    Позднее была обнаружена дифракция протонов, нейтронов и ионов. При этом получаемые дифракционные картины ничем не отличаются от типичной дифракционной картины рентгеновского излучения. [c.47]

    Уникальным методом определения структуры является рентгеноструктурный анализ, основанный на дифракции рентгеновского излучения при рассеянии на кристалле вещества. С помощью этого метода можно получить данные о точном пространственном расположении атомов в молекуле исследуемого вещества, о длинах связей между атомами и углах между связями. Единственный недостаток метода— сложность математической обработки результатов измерений, поэтому распространение рентгеноструктурного анализа было связано с быстрым развитием вычислительной техники в последние годы .  [c.27]

    Первые физические методы установления строения вещества возникли в 1912 г. с началом применения дифракции рентгеновского излучения для структурного анализа. В настоящее время для исследования химического и кристаллохимического строения веществ применяются дифракционные, спектроскопические, резонансные и другие физические методы. Многие из этих методов дают возможность получать информацию о более тонких вопросах химического и кристаллохимического строения вещества распределении электронной плотности и степени ионности связи, эффективных зарядах атомов, валентных состояниях атомов химических элементов, входящих в соединение, и т. п. Кроме того, физические методы принципиально отличаются от химических тем, что они являются неразрушающими, т. е. в процессе исследования химическое и кристаллохимическое строение вещества не изменяется. [c.173]

    Стабильность и сферическая симметрия электронных оболочек атомов инертных газов предопределяют образование кубической гранецентрированной решетки при переходе в твердое состояние. Структура этих элементов в жидком состоянии исследовалась методом дифракции рентгеновского излучения и нейтронов. [c.156]

    ЧТО между атомами гелия, неона, аргона, криптона и ксенона действуют слабые дисперсионные силы притяжения, картина дифракции рентгеновского излучения и нейтронов фиксирует наличие ближнего порядка в жидком состоянии этих элементов. Область ближней упорядоченности простирается на несколько межатомных расстояний. Характерно, что в случае сжиженных газов последовательность максимумов интенсивности рассеяния и их ширина на половине высоты почти такие же, как и для типичных металлов. Это наводит на мысль, что сжиженные инертные газы структурно подобны типичным жидким металлам. [c.166]

    На рис. 11.3 приведены кривая интенсивности (а) и кривая распределения атомов (б), полученные для хлористого лития методом дифракции рентгеновского излучения и нейтронов. [c.268]

    Наличие в жидкости пространственного упорядочения молекул подтверждается экспериментальными данными по рассеянию света, дифракции рентгеновского излучения, нейтронов и электронов. Рентгеноструктурные исследования показали, что в жидкостях, состоящих из многоатомных молекул, наблюдается не только упорядоченное расположение молекул, но и известная закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул я при формировании водородной связи. Однако, как видно на рис, 21, только в окрестности данной частицы наблюдается закономерное расположение соседних частиц. При удалении от рассматриваемой частицы А на расстояние порядка 10 атомных расстояний закономерное расположение частиц нарушается. [c.35]

    Наряду с оптическими методами для исследования дисперсных систем используются и рентгеновские методы, отличие которых от оптических заключается в малой длине волны рентгеновского излучения по сравнению с размером частиц дисперсной фазы. В основном рентгеновские методы используются для изучения внутренней структуры частиц дисперсной фазы (кристалличности, упаковки молекул). Возможно и определение размеров частиц, основанное на анализе формы дифракционных линий на рентгенограмме при дифракции рентгеновских лучей на малых кристаллах образуются размытые дифракционные максимумы, по ширине которых можно оценить размер частиц (точнее говоря, областей совершенной кристаллической решетки). Аморфные частицы, как известно, не дают дифракционных максимумов оценка размеров таких частиц может быть проведена с помощью анализа диффузного рассеяния рентгеновских лучей возле первичного пучка (так называемое малоугловое рассеяние). Теория этого метода определения размера аморфных частиц имеет общие черты с теорией рассеяния света большими частицами. [c.172]

    Помимо рентгеновского излучения дифракции на атомах в молекулярных структурах могут подвергаться также микрочастицы, которые в соответствии с представлениями де Бройля являются одновременно волнами. Длина дебройлевой волны может быть определена по уравнению (14), в которое следует подставить скорость электрона V, жестко связанную с ускоряющим напряжением V 17е = [c.215]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Волновые свойства электронов получили убедительные экспериментальные подтверждения в опытах по их интерференции и дифракции, выполненных начиная с 1927 г. американскими исследователями К. Девиссоном, Л. Джермером и советским ученым П. С. Тартаковским. Электронограммы, полученные при бомбардировке электронами монокристаллов металлов, принципиально не отличались от рентгенограмм, полученных с применением рентгеновского излучения. Эти данные подтверждают, высказанное В. И. Лениным философское положение Условие познания всех процессов мира в их самодвижении , в их спонтанном развитии, в их живой жизни, есть познание их как единства противоположностей .  [c.56]

    Волны де Бройля. В то время как фотоэффект и эффект Комптона совершенно определенно указывают на корпускулярную природу видимого и рентгеновского излучения, интерференция и дифракция стмь же определенно свидетельствуют о волновой природ . Отсюда следует вывод, что движение фотонов. характеризуется особыми законами, в которых сочетаются как корпускулярные, так и волновые характеристики. Единство таких, казалось бы, несовместимых черт выражается соотношением (1.28), связывающим массу фотона с длиной волны излучения. [c.24]

    Прн ускоряющем напряжении 100 кВ Хе=3,7-10 нм. Дифракция электронов, рассеянных кристаллической решеткой, как и дифракция рентгеновского излучения, описы-/ вается уравнением Вульфа — Бреггов, которое [c.102]

    Именно этим обстоятельством определяется возможность применения дифракции рентгеновского излучения для определения структуры молекул в кристаллах. Кристаллы, построенные из сложных молекул, дают очень сложную картину распределения интенсивностей отдельных рефлексов. Однако по ней можно полностью восстановить расположение отдельных атомов в элементарной ячейке и тем самым установить полную пространственную структуру молекул, из которых построен кристалл. Используя некоторые дополнительные приемы и применяя для расчетов быстродействующие электронно-вы-числительные машины, удается получить пространственную структуру даже таких сложных молекул, как белки и яуклеиновые кислоты. [c.163]

    Ионы хлора образуют решетку, идентичную решетке, образуемой ионами цезия. Поэтому отражения от плоскостей, содержащих ионы хлора, возможны точно под теми же углами, что и от плоскостей, содержащих ионы цезия. В рассматриваемом случае плоскости ионов хлора располагаются точно посередине между плоскостями ионов цезия, и расстояние между этими плоскостями составляет //2. Поэтому волны, отраженные от плоскости ионов хлора, будут смещены по сравнению с волнами, отраженными от соседней плоскости ионов цезия, на величину 51п0. При нечетных п эти волны смещены на половину волны и гасят друг друга. Однако в силу различий в амплитуде колебаний рассеяния (она существенно меньше для менее интенсивно рассеивающих ионов хлора) гашение будет неполное, т. е. рефлексы наблюдаются. При четных п волны, рассеянные от обеих плоскостей, совпадают по фазе, и рассеяние от ионов хлора будет несколько усиливать рассеяние от ионов цезия. Следовательно, рассеяние от системы плоскостей, содержащих грани элементарной ячейки, более интенсивно под углами 22 и 48,52°, чем под тремя остальными углами. Рассеивание от системы плоскостей, содержащих диагонали граней элементарной ячейки, под углом 31,95° существенно сильнее, чем под углами 15,34 и 52,54°. Следовательно, распределение интенсивности между рефлексами содержит информацию о распределении атомов в пределах элементарной ячейки, т. е. о структуре частиц, составляющих ячейку. Именно этим обстоятельством определяется возможность применения дифракции рентгеновского излучения для определения структуры молекул в кристаллах. Кристаллы, построенные из сложных молекул, дают очень сложную картину распределения интенсивностей отдельных рефлексов. Однако по ней можно полностью восстановить расположение отдельных атомов в элементарной ячейке и тем самым установить полную пространственную структуру молекул, из которых построен кристалл. Используя некоторые дополнительные приемы и применяя для расчетов быстродействующие электронно-вычислительные машины, удается получить пространственную структуру даже таких сложных молекул, как белки и нуклеиновые кислоты. [c.185]

    Использованные в предыдущих разделах формулы для дифракции рентгеновского излучения, в частности формулы расчета интенсивностей линий, выведены для идеальномозаичных кристаллов, когда для реального кристалла предполагается модель, по которой они содержат области с совершенной структурой (области когерентного рассеяния, ОКР), несколько разориентированные друг относительно друга. При размерах ОКР около 1000 А доля граничных областей с несколько искаженной структурой мала и практически не отражается на дифракционной картине. Размер ОКР обычно меньше размеров частиц, т.к. каждая частица может содержать не одну ОКР, а несколько, поэтому отождествление размеров ОКР и частиц неправомерно. Иногда ОКР называются кристаллитами, что и может создать подобную иллюзию. Лишь при малых размерах ОКР (меньше 100 А) это различие становится малосущественным. [c.228]

    Электронографический анализ. Как и рентгенографический анализ, этот метод основан на дифракции. В обычном электронографическом методе для облучения используюхся электроны, ускоренные до энергии 30—80 кэВ. В последнее время начинает развиваться электронография на электронах с энергией 400 кэВ. Для исследования строения самых внешних слоев твердого тела применяют медленные электроны с энергией 10—100 эВ. В связи с тем что длины волн для пучка электронов могут быть меньше, чем у рентгеновского излучения, электронографический анализ может применяться для исследования кристаллов значительно меньшего размера, исследуются также тонкие пленки, порошки, поверхностные слои массивных образцов. [c.209]

    Рассматриваются вопросы структурной кристаллографии и теории дифракции рентгеновского излучения, методы решения проблемы начальных фаз , наиболее существенные приложения структурных исследований в химии. Сравниваются возможности трех дифракционных методов рентгеновского, нейтронографического и электронографического. Во втором издании расширены ключевые разделы современного рентгеноструктурного анализа кинематические схемы дифрактомеров, основы статистического определения начальных фаз (знаков) структурных амплитуд, распределение электронной плотности в межъядерном пространстве по прецизионным данным. [c.2]

    Цель книги — показать, как по картине рассеяния рентгеновского излучения, электронов и нейтронов определяется молекулярная структура веществ от простейших по составу до сложных биологических объектов обобщить результаты исследований строения молекул, структуры различных типов индивидуальных жидкостей, металлических расплавов, растворов электролитов и неэлектролитов, жидких кристаллов н аморфных веществ изложить теорию рассеяния рентгеновского излучения иод обычными и малыми углами, дифракции электронов и нейтронов, методику и технику эксперимепта, общие представления о природе химических связей и сил межмолекулярного взаимодействия. В основу книги положены лекционные курсы, читаемые для студентов Киевского ордена Ленина государственного университета имени Т. Г. Шевченко, специализирующихся по молекулярной физике, а также написанное автором учебное пособие Структурный анализ жидкостей (1971). [c.3]

    Сравнение (2.43) с (2.20) показывает, что рассеяние электронов теми же атомами почти в 10 раз больше рассеяния рентгеновского излучения. Этим обусловливается быстрота получения электронограмм. Экспозиции электронографических исследований измеряют секундами, в то время как при рентгенографических — минутами и часами. К тому же для наблюдения картины дифракции электронов достаточно взять пленку в 200—300 А, тогда как толщина слоя вещества при рентгенографических исследованиях около 1 мм. [c.37]

    А. Нартен, Ц. Венкатеш и С. Рейс изучали структуру аморфного льда методом дифракции рентгеновского излучения и нейтронов. Образцы изготовляли при медленной (4 мг/ч) конденсации паров воды на плоскую поверхность монокристалла меди, находящегося в дьюаре при температуре жидкого гелия. Использовалось монохроматическое излучение молибдена. Опыт повторяли в течение 15 дней, и при этом изменение дифракционной картины не наблюдалось. Съемка производилась при 10 и 77 К. Исследования показали  [c.314]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Лауз Макс фон (1879—1960) — немецкий физик (ФРГ). Открыл дифракцию рентгеновского излучения на кристаллах. Работы по сверхпроводимости, квантовой теории, атомной физике. Лауреат Нобелевской премии. Почетный член АН СССР. [c.196]


Смотреть страницы где упоминается термин Рентгеновское излучение дифракция: [c.156]    [c.40]    [c.191]    [c.115]    [c.29]    [c.37]    [c.2]    [c.196]    [c.199]   
Современная общая химия (1975) -- [ c.3 , c.29 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция

Рентгеновская дифракция

Рентгеновское излучение



© 2025 chem21.info Реклама на сайте