Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение термодинамических параметров реакций по свойствам их компонентов

    ОПРЕДЕЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ РЕАКЦИИ ПО СВОЙСТВАМ ИХ КОМПОНЕНТОВ [c.52]

    В приложении помещены таблицы значений термодинамических свойств химических элементов и соединений (неорганических и органических), наиболее интересных в практическом отношении, причем преимущественно лишь тех соединений, для которых имеются данные как для 298,15 К, так и для более высоких температур. С целью иллюстрации основных методов расчета в- таблицах представлены различные сочетания функций с тем, чтобы с их помощью можно было любым методом определить тепловой эффект и константу равновесия реакции для обычных и высоких температур. Эти данные могут быть использованы для определения термодинамических параметров тех реакций, компоненты которых представлены в таблицах, а при использовании методов сравнения— также для расчета параметров других сходных с ними веществ и реакций. [c.8]


    Множитель рх в уравнении (9) учитывает явную зависимость величины т от концентрации компонента 1 в газе вблизи новерхности (см. уравнение (Б.61)). Остальные параметры в уравнении (9) те же, что и в уравнении (6), а коэффициент а может быть определен из теории абсолютной скорости химической реакции. Хотя, вообще говоря, коэффициент а может зависеть от температуры Г,-, давления и состава газа у поверхности, вполне допустимой гипотезой, позволяющей выразить а через уже введенные кинетические параметры и термодинамические свойства компонента 1, является гипотеза о том, что коэффициент а не зависит от давления и состава газа (а = = а (Тг)). Тогда нри постоянной температуре Г,- последний член в правой части формулы (9) пропорционален концентрации а первый член в правой части формулы (9) не зависит от С1, . Следовательно, при увеличении концентрации (или парциального давления) компонента 1 в газе на поверхности может быть достигнуто условие равновесия для компонента 1, т, е. будет иметь место равенство т = 0. Если через Р1,е(Т1) обозначить равновесное [c.277]

    Перейдем к рассмотрению экспериментов. Нам уже известны свойства плазмы с точностью до порядка величины. При определении термодинамических свойств возможная точность расчета не выходит за пределы 2%. При расчетах коэффициентов переноса точность много хуже. Кроме того, чтобы избавиться от практически непреодолимых математических трудностей, мы ввели при расчетах довольно грубые допущения, обычно принимаемые и в других работах. Мы усредняли многие непостоянные величины, причем это делалось так, что оценить ошибки в конечных результатах невозможно. Возможна ошибка в 2 раза, хотя многие считают используемую нами теорию не такой уж плохой. В какой степени положение может быть исправлено экспериментом Если бы мы имели материал, способный работать при 20 000 К, то все эксперименты были бы чрезвычайно просты. Измерив градиент давления при изотермическом ламинарном течении плазмы в трубе, можно определить вязкость. Эксперименты по теплообмену позволили бы определить теплопроводность и электропроводность, измеряя другие параметры. Из-за отсутствия необходимых для этого высокотемпературных материалов мы воспользуемся другим методом, который, возможно, позволит нам использовать наш теоретический аппарат для предсказания результатов эксперимента. В этом методе в сущности нет ничего нового. Еще до постановки экспериментов по определению вязкости обычных жидкостей (например воды) была принята гипотеза о прямой пропорциональности величины касательных напряжений градиенту скорости. Затем на основании этой гипотезы была получена теоретическая формула, описывающая ламинарное течение в трубе. Совпадение полученных теоретических результатов с экспериментом позволило считать вязкость физической константой, имеющей вполне определенный смысл. Этим же путем следовало бы идти и в случае плазмы, но отсутствие подходящих конструкционных материалов не позволяет осуществить изотермические условия. Тем не менее мы попытаемся воспользоваться этим же методом, ставя простые эксперименты, результаты которых можно предсказать теоретически, а затем попытаемся скорректировать теорию. Оказывается, что лучше всего использовать обычную струю плазмы, получаемую в определенных условиях. В струе плазмы, вытекающей из сопла плазматрона, температура очень сильно изменяется и по длине и по сечению струи. Если же взять трубу и разместить электроды на ее торцах, то осевого градиента температуры быть не должно. Следовательно, задача из двумерной превращается в одномерную. Для получения стационарной дуги необходимо охлаждать стенки трубы водой, поддерживая их температуру постоянной. Для плазмы при атмосферном давлении трудно придумать эксперимент проще. Теперь надо решить, какое вещество использовать в качестве рабочего тела. Конечно, для наших целей не годятся воздух, вода и даже водород, так как в водородной плазме содержится слишком много компонент На, Н, Н+ и е . Если не удастся достигнуть локального равновесия, то необходимо рассматривать по крайней мере четыре независимые группы уравнений с соответствующим числом соотношений для скорости реакций. Лучше с этой точки зрения применить гелий при 6 83 [c.83]


    Замечательным свойством термодинамически равновесных сред является то, что отношение констант скорости прямого и обратного направлений реакции в таких средах равно константе равновесия реакции, вычисленной при значениях термодинамических параметров, определяющих состояние среды. В тех случаях, когда реакцию нельзя охарактеризовать константой скорости, не зависящей от концентраций компонент среды, взаимосвязь скоростей двух направлений реакции выражается в более общей форме константе равновесия равно отношение коэффициентов скорости реакции , которые определенным образом связаны с концентрациями компонент среды и с константами скорости одноступенчатых реакций. Доказательство этого свойства дано в следующих двух разделах данного параграфа. [c.191]

    С) стали и вытеснение ее атомами защитного газа (аргона), которые гораздо тяжелее атомов серы, на периферию плазменной дуги с температурой 2000 — 1000 °С, где атомы серы соединяются с кислородом в ЗОг, 50 и удаляются из зоны реакции в атмосферу. Процесс протекает при высокой температуре и интенсивном перемешивании расплавленного металла. Значительный температурный градиент оказывает влияние на поверхностное натяжение и усадку и приводит к изменению топографии поверхности переплавленного слоя металла. Испарение серы зависит от температуры плазмы, размера частиц, времени пребывания в плазме, физических свойств частиц плазмообразующего газа и ряда других факторов и с термодинамической точки зрения представляет переход вещества из одной фазы в другую, проходящий при постоянной температуре и неизменном давлении. Процесс получения максимального выхода серы в виде 5, 50, 50г, 5гО при минимальном выгорании легирующих элементов оптимизировали расчетным путем по минимальной загрязненности поверхности примесями (сульфидами, оксисульфидами). При предъявлении требований к чистоте поверхности и переплавленному слою подбирали режимы переплава таким образом, чтобы, варьируя температуру, соотношение компонентов защитного газа (Аг, О2), время пребывания металла в расплавленном состоянии, переплавленный слой металла был мало загрязнен различными примесями и это согласовалось с кинетикой окислительновосстановительного процесса. Применение первого вариационного принципа химической термодинамики для определения равновесных параметров многокомпонентных гетерогенных систем показало, что интенсивное окисление серы кислородом в газовой фазе происходит при высоких температурах (2500 — 3000 °С), которые достигаются при нагреве металла низкотемпературной плазмой в защитной среде, содержащей 95 % Аг + 5 % О2 (рис. 165). Процесс десульфирования путем переплава поверхности металла может быть представлен как ступенчатый, заключающийся в последовательном переходе атомов через различные фазы металл —пар с последующим окислением в области низких температур и удалении в атмосферу в виде молекул и атомов. Наряду с удалением из расплава 5, 502, 50 путем выноса их на поверхность жидкого металла происходит частичное растворение и измельчение неметаллических включений, что приводит к снижению балла по сульфидным включениям. Экспе- [c.392]

    Гетерогенные системы. Гетерогенными системами называются системы, в которых однородные части отделены друг от друга поверхностью раздела. Примерами таких систем являются, например, вода — лед, жидкость — пар. При рассмотрении гетерогенных систем пользуются понятиями число фаз Ф, число компонентов К, число степеней свободы С. Фазой называется однородная во всех точках по химическому составу и физическим свойствам часть системы, отделенная от других гомогенных частей системы поверхностью раздела. Наличие поверхности раздела является необходимым, но недостаточным признаком фазы. Так, например, однородные кристаллы ЫаС1 в насыщенном растворе составляют одну фазу. Числом независимых компонентов в системе называется наименьшее число индивидуальных веществ, при помощи которых можно определить состав каждой фазы в отдельности. В химической системе понятие вещество и компонент не идентичны. Вследствие того, что между компонентами могут протекать химические реакции, число компонентов сокращается на число протекающих реакций. Иначе говоря, число компонентов химической системы равно числу веществ, содержащихся в системе, за вычетом числа реакций, идущих между ними. Так, например, система Са0(тв)+С02(г) СаСОз(тв) характеризуется любыми двумя компонентами из трех. Числом степеней свободы системы называется число термодинамических параметров (температура, давление и концентрация), определяющих ее состояние, которое можно произвольно менять в определенных пределах без изменения числа фаз. Гетерогенные системы имеют большое практическое значение в металлургии, галургии и других областях. [c.78]



Смотреть главы в:

Методы практических расчетов в термодинамике химических реакций -> Определение термодинамических параметров реакций по свойствам их компонентов

Методы практических расчетов в термодинамике химических реакций -> Определение термодинамических параметров реакций по свойствам их компонентов




ПОИСК





Смотрите так же термины и статьи:

Компонент, определение

Определение термодинамических свойств

Параметры определение

Параметры реакции

Параметры термодинамические

Реакция определение

Термодинамические параметры, определение

Термодинамические свойства



© 2025 chem21.info Реклама на сайте