Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические параметры, определение

    Теоретические основы и промыслово-лабораторные методы определения термодинамических параметров нефтяных и газовых пластов и насыш,аюш,их их флюидов освещены в монографии автора Термодинамические исследования фильтрации нефти и газа в залежи (М., изд-во Недра , 1970). Таким образом, можно считать, что данная книга является логическим продолжением упомянутой и дополнением к ней. [c.6]


    Приведенные примеры иллюстрируют наиболее важные случаи нахождения оптимальных параметров с помощью термодинамических расчетов. Определения эти могут быть неполными, если не располагать экспериментальными кинетическими данными. Тем не менее термодинамические расчеты играют важную роль при оценке химической концепции, так как дают возможность предвидеть и исключать некоторые области изменения параметров, в которых достижение требуемого выхода продукта невозможно. [c.181]

    Приведенные процедуры совместно с процедурами определения параметров насыщенной жидкости, давления и температуры насыщения составляют основной пакет процедур термодинамических свойств реальных газов. С их помощью реализуются процедуры определения нужных термодинамических параметров по любым двум известным. Такие процедуры непосредственно используются при решении систем уравнений термодинамических процессов в элементах проточных частей ступеней центробежных компрессоров. [c.35]

    Важно, что в общем случае показатель политропы есть величина переменная, зависящая от р и у или любой другой пары независимых термодинамических параметров. Эта зависимость определяется видом уравнения состояния, и поэтому уравнение (2.6) может быть проинтегрировано лишь в ограниченном числе частных случаев. Из них практический интерес представляет лишь случай идеального газа, у которого теплоемкости Ср и Сц постоянны, а внутренняя энергия и энтальпия являются функциями только температуры. Это означает, что для идеального газа частные производные (ди/ди),- и (дИдр)т обращаются в нуль и показатель политропы будет определен выражением [c.56]

    Определение параметров по температуре и энтропии. Рассмотрим определение термодинамических параметров, если известны температура и энтропия. Основной является процедура, определяющая плотность вещества  [c.108]

    Определение параметров по давлению и энтропии. Часто возникает необходимость определения термодинамических параметров вещества в конце изоэнтропного процесса сжатия или расширения. При этом в искомой точке обычно известны давление и энтропия. Рассмотрим процедуру, которая позволяет решить эту задачу  [c.110]

    Наблюдаемое (макроскопическое) состояние, характеризуемое определенными термодинамическими параметрами, может существовать при различном распределении молекул, т. е. оно осуществляется разными м н к р о с о с т о я н и я м и, отличающимися друг от друга по определенному признаку. [c.104]

    В приведенных выше уравнениях известны теплоты образования молекулярных частиц, и для каждого процесса могут быть получены относительные термодинамические энергии (Е ). Например, для уравнения с ННз определяется как теплота образования ОН3 минус теплота образования КНз. График зависимости Ет от энергий связи 15-электронов азота ( ь) демонстрирует исключительно хорошую корреляцию (рис. 16.16). Такой тип замещения эквивалентных оболочек дает хорошие корреляции и для данных по энергиям связи электронов в других элементах, например в углероде (Ь) и ксеноне ( /2) [55]. Этот вид корреляций полезен, поскольку дает возможность из некоторых измеренных энергий связи электронов оболочки и известных термодинамических параметров предсказать различные, еще не определенные термодинамические величины. Изучение приведенных выше уравнений показывает, что их можно использовать для определения сродства к протону. По некоторым непонятным причинам сродство к протону (РА) молекулы В берется как положительное число и приравнивается изменению энергии процесса (16.32) с отрицательным знаком. [c.351]


    Для определения термодинамических параметров алкенов разумнее использовать ограниченное число справочных данных, на основе которых по определенным правилам можно было бы рассчитать характеристики алкена заданного строения. С этой целью нами на основе известных термодинамических величин [I—3] определены поправки — изменения теплоемкости ср, энтропии S , теплоты образования Aff и изобарно-изотермического потенциала (энергии Гиббса) при образовании AG для следующих изменений в молекуле олефина  [c.7]

    Исследование хи шко-технологического процесса завершается поиском оптимальных условий его осуществления. В лабораторных исследованиях и при управлении — это подбор состава смеси, добавок к ней, катализаторов, режимных параметров при проектировании — это выбор допустимого масштабного перехода и оптимальной конструкции технологического оборудования. При решении этих общих задач приходится иногда использовать поиск оптимума и на вспомогательных этапах, главным из которых является наилучшее определение кинетических и термодинамических параметров процесса. [c.175]

    Увеличение числа установок гидрокрекинга и их суммарной мощности привлекли внимание исследователей к изучению физико-химических закономерностей процесса. Действительно, большинство реакционных устройств для проведения гидрокрекинга в одну или две ступени представляет собой многосекционные адиабатические аппараты с промежуточными вводами водород-содержащего газа. Определение оптимального распределения объемов катализатора по секциям, потоков сырья и водородсодержащего газа не может быть выполнено обычными методами физического моделирования и требует проведения точных количественных расчетов на основе изучения химизма процесса, его кинетических закономерностей, термодинамических параметров. [c.353]

    Экспериментальной основой термодинамического изучения таких систем служат масс-спектрометрические определения. Они дают возможность определить равновесные концентрации частиц разного вида и отсюда рассчитать константу равновесия и связанные с ней величины. Получение таких данных для разных температур позволяет оценить тепловой эффект процесса и другие термодинамические параметры его. [c.240]

    Путем потенциометрических измерений можно определять также различные термодинамические параметры химических окислительно-восстановительных реакций. Наибольшее значение имеет определение изменения изобарного потенциала и, следовательно, константы равновесия данной реакции. [c.442]

    В настоящее время происходит интенсивное накопление экспериментальных данных о термодинамических свойствах различных веществ и термодинамических параметрах химических реакций. Это приводит к качественно новым возможностям — на основе справочных данных расчетным путем определять положение равновесия, тепловые эффекты и другие термодинамические параметры для большого числа реакций, не прибегая к непосредственному экспериментальному определению этих величин, которое обычно бывает гораздо более трудоемким, более длительным и даже не всегда доступным. Особенно важно, что такие расчеты позволяют дать сравнительную оценку и найти оптимальные условия проведения реакции. [c.6]

    Эти возможности уже в настоящее время распространяются на сотни тысяч разных реакций и продолжают быстро расти как в направлении охвата все большего числа веществ и реакций, так и в направлении увеличения диапазона температур, доступного для такого расчета. Одновременно повышается точность и надежность результатов расчета. Вместе с тем быстрое расширение круга химических соединений, находящих применение в тех или других отраслях новой техники, привело к тому, что экспериментальное определение термодинамических параметров различных веществ и реакций не успевает удовлетворять все возрастающую потребность в новых данных. [c.6]

    В приложении помещены таблицы значений термодинамических свойств химических элементов и соединений (неорганических и органических), наиболее интересных в практическом отношении, причем преимущественно лишь тех соединений, для которых имеются данные как для 298,15 К, так и для более высоких температур. С целью иллюстрации основных методов расчета в- таблицах представлены различные сочетания функций с тем, чтобы с их помощью можно было любым методом определить тепловой эффект и константу равновесия реакции для обычных и высоких температур. Эти данные могут быть использованы для определения термодинамических параметров тех реакций, компоненты которых представлены в таблицах, а при использовании методов сравнения— также для расчета параметров других сходных с ними веществ и реакций. [c.8]

    Хотя эти вспомогательные таблицы, вследствие неполноты данных и недостаточной их внутренней согласованности, не заменяют справочник, автор надеется, что они все же во многих случаях облегчат работу по определению термодинамических параметров химических процессов. [c.8]


    Весьма ценно, что термодинамические параметры реакции не зависят от масштаба ее проведения, и поэтому определение их облегчает переход от результатов лабораторного изучения к осуществлению в производственных условиях. [c.13]

    Создание обширного фонда фактических данных внесло существенное изменение в методы определения термодинамических параметров химических реакций. [c.20]

    Аналитическое определение равновесных концентраций часто затруднительно, если его требуется выполнять при температуре и давлении, отличающихся от изучаемых (так как состав реакционной системы может измениться при изменении температуры и давления). Закалку системы тоже не всегда можно осуществить. Поэтому такой путь определения термодинамических параметров реакции дает хорошие результаты большей частью лишь в тех случаях, когда состав реакционной системы можно установить, не вызывая смещения равновесия. Это удается сделать в одних случаях, например, измерением плотности или показателя преломления, в других — измерением изменения объема или давления, когда реакция происходит с изменением числа молей газообразных ве-веществ, в частности, когда лишь один из компоненте реакции находится в газообразном состоянии. Последнее имеет место. [c.31]

    В связи с этими трудностями общий объем данных о равновесии и связанных с ним термодинамических параметрах химических реакций первоначально был сравнительно ограниченным. Открытие третьего закона термодинамики дало возможность определять химические равновесия на основе расчета абсолютных значений энтропии путем измерения низкотемпературных теплоемкостей и теплот фазовых переходов. В настоящее время этот путь часто оказывается более доступным, чем путь прямого определения равновесия, в особенности, если имеется возможность использовать для тех или иных составляющих величин готовые справочные данные. [c.32]

    ОПРЕДЕЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ РЕАКЦИИ ПО СВОЙСТВАМ ИХ КОМПОНЕНТОВ [c.52]

    Глава II. Определение термодинамических параметров реакций [c.54]

    Соотношения (И, 8) служат также для определения атомарных теплот образования и атомарных энтропий образования по соответствующим обычным параметрам реакций образования из простых веществ. Раньше подобные определения были затруднены отсутствием необходимых данных о термодинамических параметрах процессов атомизации простых веществ. В настоящее же время такие данные имеются почти для всех элементов (как для 298,15 К, так и для более высоких температур). [c.57]

    Определение термодинамических параметров. Определение термодинамических параметров обычно проводится из данных по плавлению олигонуклеотидов. Анализ кривых плавления коротких двуспиральных фрагментов позволяет получить термодинамические характеристики в зависимости от последовательности оснований. При помощи дисперсии оптического вращения (используются также другие спектроскопические методы, а также протонный магнитный резонанс) можно получить кривые зависимости поглощения при изменении температуры. Сравнивая кривые поглощения одно- и двуспи- [c.192]

    В книге достаточно подробно даны объяснения тем термодинамическим параметрам пластовой нефтегазовой системы, с помощью которых можно определить сходимость и подобие нефти, газа или бинарной смеси. Например, во второй главе при одинаковых термогидравли-ческих условиях была цоказана довольно удовлетворительная сходимость различных ио качеству, составу и месторождению нефтей и газов по определенным значениям величины Ср (см. табл. 1 и 2). Некоторую сходимость можно заметить по значениям энтальпии и энтропии (ири различных величинах Т и р) по некоторым нефтегазовым месторождениям Советского Союза и США (см. табл. 3). [c.132]

    Адсорбция — избирательное поглощение индивидуальных компонентов или их групп из газов, паров или жидкостей твердым поглотителем — адсорбентом. В этом процессе при определенных термодинамических параметрах извлекаемые (целевые) компоненты переходят из газовой или идкой фазы н твердую. При других параметрах процесса начинается обратный переход целевых компонентов из твердой фазы в газовую. Этот процесс называется д е с о р б ц и е й. Примером адсорбции может служить извлечение жидких углеводородоЕ из тощих потоков газа активированным углем, удаление в одел из газа силикагелем или алюмогелем, удаление меркаптанов молекулярными ситами и т. п. [c.50]

    ИЗ 1,1-диметилциклопентана 1,2-диметилциклопентана,Г ис или из 1,1-Диметилциклогексана 1,2-диметилциклогексана,цыс теплота реакции составляет 8,7—9,1 кДж/моль, Д5° — 7,2—10,3 кДж/(моль-К), Кр — 0,3—0,4. Наблюдающиеся отдельные отклонения в этих величинах для однотипных изменений в алкил-циклопентанах и алкилциклогексанах (например, 1,2-транс—>-—>-1,3-транс-миграция заместителя) связаны с недостаточно точным определением термодинамических параметров изомеров. В этой связи следует учитывать приближенный характер приводимых ниже расчетных равновесных составов. [c.195]

    Вместе с тем, если для реакции 1,2-цис—>-1,2-транс характерно выделение тепла и высокая константа равновесия, то для аналогичной реакции 1,3-диалкилзамещенных — поглощение тепла и низкая константа равновесия. Соответственно в равновесных смесях 1,2-диалкилзамещенных будет больше трансизомера, а в смесях 1,3-диалкилзамещенных — цис-изомера. Различная термодинамическая устойчивость транс- и цис-изо-меров в зависимости от расстояния между алкильными заместителями объясняется с позиций конформационного анализа высокой устойчивостью только таких структур, в которых минимально отталкивающее взаимодействие несвязанных атомов. Ясно, что такое взаимодействие будет весьма значительным для 1,2-цис-, но не для 1,3-цис-структур. Расчеты показывают, что в 1,2-диметилциклопентанах содержание цис-изомера составляет только 5%, в то время как для 1,3-диметилзамещен-ных —уже 62%. Отметим сразу, что с позиций конформационного анализа трудно объяснить большую термодинамическую устойчивость 1,3-цис по сравнению с 1,3-транс-изонерами. В экспериментальных исследованиях достигаемое соотношение этих изомеров близко к единице [35, 36], вследствие чего нет уверенности в точном определении термодинамических параметров [c.196]

    Надежные термодинамические параметры получены для алкилбензолов [27]. Мы ниже рассмотрим подробно термодинамику изомеризации их смесей, так как она представляет не только научный, но и практический интерес. Что касается изомеризации алкилнафталинов и полициклических ароматических углеводородов, то в этих случаях для термодинамических расчетов приходится использовать приближенные методы, и для определения равновесного состава часто прибегают к эксперименту. Нужно также отметить, что изучение изомеризации полициклиг ческих ароматических углеводородов имеет пока только научное значение. [c.201]

    Если вся система реакций (1.37), (1.38) обратима и близка к состоянию равновесия, то состав катализатора, вне зависимости от исходного, целиком определяется термодинамическими условиями равновесия. В этом случае, если состав катализатора, например окисла, является функцией давления одного из компонентов, например кислорода, то, в соответствии с условиями гетерогенного равновесия, для всей области температур Т и парциальных давлений Р, за исключением точки равновесия с определенными Т ш Р, катализатор будет представлять собой одну фазу. Если реакция проводится в точке равновесия, то катализатор может быть двухфазным, однако практическое осуществление такого случая невероятно. Иное дело, если протекающие в системе реакции, например реакции контактного окисления органических соединений, практически необратимы, тогда фазовый состав работающего катализатора целиком определяется кинетическими, а не термодинамическими параметрами. При проведении обратимых реакций в условиях, далеких от равновесия (что большей частью бывает на практике), фазоЬый состав катализатора также не определяется термодинамикой. [c.50]

    Требования к точности различных величин зависят от их назначения. При расчетах поискового характера, когда, например, производится предварительное сопоставление различных реакций, при-водлщих к получению требуемого вещества, часто бывает достаточной приближенная оценка термодинамических параметров реакции. При определении оптимальных условий проведения реакции такая оценка может оказаться уже недостаточной и требуется более высокая точность. Кроме того, в многотоннажных производствах, где существенное значение имеет повышение выхода даже на доли процента, необходима еще более высокая точность данных, характери зующих термодинамические параметры реакции и зависимость их от условий ее проведения. [c.35]

    К, обычно бывают построены таким образом, что определение любого из основных термодинамических параметров кМ хи-. мической реакции при этой температуре сводится к определению алгебраической суммы соответствующих параметров компонентов этой реакции [c.82]


Смотреть страницы где упоминается термин Термодинамические параметры, определение: [c.133]    [c.118]    [c.33]    [c.336]    [c.189]    [c.14]    [c.30]    [c.60]   
Аффинная хроматография (1980) -- [ c.57 ]

Глубокое охлаждение Часть 1 (1957) -- [ c.29 , c.30 ]

Глубокое охлаждение Часть 1 Изд.3 (1957) -- [ c.29 , c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры на солюбилизацию углеводородов в водных растворах глобулярных белков и определение термодинамических параметров связывания

Вопросы взаимодействия пар-жидкость. Определение термодинамических параметров растворения (коэффициенты активности, константы равновесия и др

Г о л у б ц о в. Некоторые вопросы экспериментального определения термодинамических параметров пара

Газо-жидкостная хроматография и вопросы взаимодействия пар — жидкость Определение термодинамических параметров растворения (коэффициенты активности и распределения, константы равновесия и др

Модель двух состояний и определение термодинамических параметров

Определение параметров компрессора и пример термодинамического расчета

Определение термодинамических параметров взаимодействия полимера с растворителем

Определение термодинамических параметров молекулярных соединений

Определение термодинамических параметров переходного состояния

Определение термодинамических параметров равновесных фаз водоаммиачного раствора

Определение термодинамических параметров реакций на основе сравнения реакций

Определение термодинамических параметров реакций по свойствам их компонентов

Определение термодинамических параметров с помощью транспортных экспериментов

Определение термодинамических свойств веществ и параметров химических реакций в некоторых частных случаях

Параметры определение

Параметры термодинамические

Применение потенциометрических методов. Определение термодинамических параметров химических реакций

Растворение определение термодинамических параметров

Содержание Б Определение термодинамических свойств веществ и параметров химических реакций в некоторых частных случаях

Сольватация, методы определения разделение термодинамических параметров на составляющие

Экспериментальное определение термодинамических параметров биологических систем



© 2025 chem21.info Реклама на сайте