Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плазмы

    Сложность спектра зависит от числа валентных электронов в атоме элемента, строения электронных оболочек (s-, р- и Л-элементы) и температуры плазмы. Чем меньше число валентных электронов, проще электронная оболочка и ниже температура разряда, тем проще спектр элемента. Так, спектры щелочных металлов в области от 200 до 800 нм насчитывают всего несколько десятков линий, в то время как спектры d- и /-эле- [c.9]


    Интенсивность спектральной линии при постоянных условиях пропорциональна количеству введенных в пламя атомов элемента или концентрации соли металла в анализируемом растворе. Однако в реальных случаях эта зависимость может нарушаться вследствие протекания в пламени процессов самопоглощения, ионизации и образования термически устойчивых соединений. На рис. 1.13 представлена зависимость интенсивности спектральной линии от концентрации элемента в растворе. При средних содержаниях определяемого элемента в растворе эта зависимость линейна. Для больших содержаний сказывается влияние самопоглощения эмиссии атомов в плазме и в этом случае интенсивность излучения спектральной линии пропорциональна корню квадратному, из концентрации элемента в растворе. При очень низких концентрациях элемента и высокой температуре плазмы проявляется процесс ионизации его атомов и интенсивность излучения спектральной линии пропорциональна квадрату концентрации. В обоих случаях градуировочный график искривляется. Кроме процессов, указанных выше, на ход графика влияет ряд других факторов, поэтому определение элементов в методе фотометрии пламени проводят с использованием серии растворов сравнения. Они должны содержать все вещества, входящие в состав исследуемого раствора, и фотометрироваться в одинаковых с ним условиях. [c.37]

    Описаны различные способы измерения температуры плазмы дугового разряда. Наиболее распространенные способы основаны на измерении относительной интенсивности спектральных линий атомов или ионов, принадлежаидих одному атому одного и того же элемента. Расчет проводится по формуле [c.37]

    Анализ может быть выполнен следующим образом готовят серию образцов сравнения, измеряют интенсивность аналитической спектральной линии для каждого из них, строят градуировочный график в координатах gla- g , измеряют интенсивность аналитической спектральной линии для пробы с помощью графика, который, как это видно з приведенной зависимости, представляет собой прямую, определяют концентрацию элемента в пробе. Однако, кроме концентрации, на интенсивность спектральной линии сильное влияние оказывают температура плазмы, скорость испарения в ней вещества пробы, степень его атомизации и т. д., т. е. факторы, которые не могут быть идентичными для стандартных образцов и проб, вследствие различия их состава и физико-химических свойств и изменяются в кал дом эксперименте. Погрешность определений уменьшается, если измерять относительную интенсивность двух спектральных линий (так называемая гомологическая пара), одна из которых принадлежит анализируемому элементу, а другая — элементу сравнения, вводимому в эталоны и пробы с одинаковой концентрацией. Относительная интенсивность гомологической пары спектральных линий зависит только от концентрации анализируемого элемента  [c.23]


Рис. 3.15. Изменение температуры плазмы дуги переменного тока во времени 1 — метод вдувания порошка 2 — метод испарения пробы из канала электрода. Рис. 3.15. Изменение <a href="/info/933440">температуры плазмы дуги</a> <a href="/info/15255">переменного тока</a> во времени 1 — <a href="/info/1104563">метод вдувания</a> порошка 2 — <a href="/info/1072281">метод испарения пробы</a> из канала электрода.
    Таким образом, оптимальная температура плазмы, при ко торой достигается максимальная интенсивность линии, зависит от потенциала ионизации данных атомов и энергии возбужде- [c.54]

    Электрическая дуга постоянного тока — более высокотемпературный источник, чем пламя. Анализируемый образец в измельченном виде помещают в углубление в нижнем электроде, который, как правило, включают анодом в цепь дуги. Температура плазмы дуги зависит от материала электродов и ионизационного потенциала газа в межэлектродном промежутке. Наиболее высокая температура плазмы ( 7000 К) достигается в случае применения угольных электродов, для дуги с медными электродами она составляет примерно 5000 К-Введение в плазму солей щелочных элементов (например, калия) снижает температуру плазмы до 4000 К. [c.59]

    Температура плазмы в установке Т-10 2 кэВ, а в установке Т-15 достигает 10 кэВ. Во сколько раз отличается давление плазмы в установке Т-15 от давления в установке Т-10, если концентрации частиц в установках одинаковы  [c.43]

    Одним из замечательных свойств плазмы является ее высокая электрическая проводимость. Чем выше температура плазмы, тем выше ее проводимость. В силу этого через плазму можно пропускать токи в сотни тысяч и миллионы ампер. [c.12]

    Буферы, стабилизирующие температуру плазмы (соли натрия, лития и др.). [c.118]

    Увеличение напряжения на электродах при неизменном токе разряда приводит к сильному повышению температуры плазмы, так как увеличивается мощность электрического разряда, а ширина плазмы даже несколько уменьшается под действием более сильного электрического поля. [c.57]

    Таким образом, температура плазмы зависит, главным образом, от напряжения на электродах и от плотности тока, т. е. от тока, проходящего через единицу площади в сечении разряда. [c.57]

    Различные типы газового разряда при атмосферном давлении различаются по своим электрическим параметрам. Температура плазмы меняется в широких пределах от наиболее мягкого — дугового — разряда до высокотемпературных жестких режимов искрового и импульсного разрядов. [c.57]

    Сопротивление дугового разряда зависит от ионизационного потенциала веществ, е парах которых он протекает. Чем ниже ионизационный потенциал, тем больше заряженных частиц в плазме и меньше ее электрическое сопротивление. Снижение сопротивления приводит к падению напряжения на электродах при том же разрядном токе. Мощность разряда и температура плазмы сильно уменьшаются. [c.59]

    Замечательным свойством плазмы является ее высокая электропроводность. Через плазму можно пропускать электрический ток в сотни тысяч и более ампер. Электропроводность плазмы растет с повышением температуры. Плазма взаимодействует с электрическими и магнитными полями. Действием магнитного поля плазму можно оттеснять от стенок сосуда, вследствие чего требования к жаропрочности материала сосуда резко снижаются. [c.15]

    Непрерывное горение дуги, большая мощность и энергичное испарение электродов обеспечивают высокую яркость дугового разряда. Относительно низкая температура плазмы приводит к появлению в спектре дуги линий, главным образом с невысокими потенциалами возбуждения. Наиболее интенсивные линии, возбуждаемые в дуговом разряде, расположены в видимой, а также в ближайшей и средней ультрафиолетовой областях спектра. [c.60]

    При возрастании тока мощность и яркость дуги, хотя и медленно, увеличиваются, что обычно приводит к повышению чувствительности анализа. Температура плазмы при этом заметно меняется только при работе с металлическими электродами. При использовании графитовых и угольных электродов она остается практически неизменной. [c.60]

    Сопротивление дуги и напряжение на электродах зависит от расстояния между ними. Поэтому для получения постоянной температуры плазмы при анализе необходимо всегда устанавливать строго одинаковое расстояние между электродами. [c.60]

    Искровой разряд. Увеличить температуру плазмы без повышения средней мощности источника света можно, если от непрерывного горения перейти к отдельным кратковременным разрядам. Каждый раз разряд происходит при значительном напряжении на электродах и большой плотности тока, но время его горения очень мало и средняя мощность невелика. Такой тип разряда называют искрой. [c.60]

    Следствием высоких температур плазмы являются очень большие скорости протекания химических реакций, время завершения которых имеет порядок 10 — с. Это может обеспечить высокую производительность плазменных агрегатов. [c.359]


    При высоких температурах газа тепловое движение частиц становится настолько интенсивным, что столкновение молекул и атомов может привести к ионизации. Так как в электрических дугах температура плазмы в столбе может достигать очень высоких значений, то такая термическая ионизация в них играет большую роль. [c.22]

    До сих пор температура плазмы и плотпость частиц непосредственно не были измерены. Однако электронная температура была оценена на основе оптического спектра урана и составила около 6500 К. Это верхний предел ионной температуры. Средняя плотпость частиц урана, оцененная по количеству сконденсированного [c.287]

    Температуру плазмы поддерживают в зависимости от целей опыта и применяемого источника энергии в пределах 4000-1Т)000°С. Для плазмохимических превращений применяют тонкодисперсный уголь с размерами частичек < 100— 150 мкм. Получаемые газообразные продукты состоят преимущественно из ацетилена и его гомологов. Выход ацетилена возрастает с понижением степени химической зрелости углей и при более тонком их помоле. [c.213]

    Потенциал ионизации представляет собой энергию, необходимую для отрыва одного электрона от атома или иона. По первому потенциалу ионизации элемента можно оценить оптимальную температуру плазмы, при которой ионизация его нейтральных атомов еще не будет проявляться, а резонансные спектральные линии будут иметь максимальную интенсивность. При возбуждении легкоионизируемых элементов (щелочные и щелочноземельные металлы) используют низкотемпературные пламена, для среднеионизируемых элементов (остальные металлы) — дуговой разряд или высокотемпературные пламена и, наконец, для неметаллов — искровой разряд. Для подавления ионизации и поддержания постоянной температуры плазмы в течение экспозиции при эмиссионном спектральном анализе проб различного состава в них вводят буферные компоненты, содержащие элементы с подходящими потенциалами ионизации. [c.11]

    Для улучшения условий возбуждения спектров в дуге применяют контролируемую атмосферу (например, инертного газа), стабилизацию положения плазмы в пространстве магнитным полем (в частности, вращающимся) или потоком газа. Получили также распространение дуговые плазмотроны (рис. 3.1). Анод дуги 3 имеет отверстие диаметром 1—2 мм, через которое выдувается инертный газ, подаваемый в камеру под давлением 150—200 кПа по трубке, расположенной касательно к стенкам камеры. Образующиеся в камере вихревые потоки охлаждают и сжимают дуговую плазму, которая затем вместе с газом выбрасывается через отверстие в аноде и в виде устойчивой струи длиной 10—15 мм светится над поверхностью анода. Температуру плазмы можно при этом варьировать в интервале 5000—12000 К. Плазмотрон применяют главным образом для анализа растворов и реже для анализа порощков. [c.60]

    При оптимизации условий возбуждения спектров тех или иных эле.мсшии необходимо уметь измерять температуру плазмы используемого источника света. В случае электрической дуги, горящей при атмосферном давлении, между частицами плазмы устанавливается локальное термодинамическое равновесие (температуры атомов и свободных электронов одинаковы), и засе-ленноб Гь энергетических уровней атомов определяется формулой Больцмана] [c.130]

    В выпускаемых и широко используемых АЭД-приборах анализируемое вещество из хроматографической колонки вводится непосредственно в плазму конец хроматографической колонки вставляют непосредственно в разрядную трубку, в которой находится плазма (рис. 14.2-10). Поскольку стабильная работа плазмы и чувствительное и селективное детектирование различных элементов требует скоростей потока гелия 30-200 мл/мин, в поток вводится дополнительный гелий. Газ-реагент или маскирующий газ (кислород или водород или комбинация обоих газов для детектирования большинства элементов или смесь азота и метана для детектирования кислорода) также добавляется в поток перед введением его в плазму для повышения селективности и чтобы предотвратить образование углеродных отложений на стенках разрядной трубки. Плазма поддерживается микроволновым генератором низкой емкости (60 Вт) в кварцевой разрядной трубке внутренним диаметром около 1 мм, расположенной в центре микроволновой полости. Поскольку плазма не выдерживает введения больших количеств органических соединений, перед входным отверстием в плазму установлено клапанное устройство. При температуре плазмы более 3000 К определяемые соединения полностью атомизованы, возбуждены и испускают характеристическое излучение. Эта элемент-специфичная эмиссия наблюдается через открытый конец разрядной трубки (чтобы предотвратить мещающее влияние отложений на стенках разрядной лампы) и проходит через проводящую оптику на голографическую решетку, диспергирующую полихроматический свет. Расположенная в фокальной плоскости решетки подвижная 211-строчная фотодиодная матрица детектирует элемент-специфичное излучение. Поскольку диодная матрица покрывает лишь 25 нм всего доступного спектра (165-800 нм), одновременно могут детектироваться лишь те элементы, которые имеют эмиссионные линии, находящиеся достаточно близко, чтобы детектироваться при одном положении диодной матрицы. По этой причине, [c.616]

    ИСП характеризуется не только крайне высокой температурой плазмы, но и особым способом нагревания пробы. Проба, в основном в виде раствора, подается потоком газа со скоростью 1 л/миР1 через центральный канал горелки, температура которого мала по сравнению с окружающей тороидальной плазмой. Поэтому проба разогревается плазмой, находящейся вовне. Только на некотором расстоянии над катушкой распределение температур в факеле плазмы становится аналогичным другим источникам света. На рис. 3.35 показан температурный профиль ИСП на разных высотах факела. Несмотря на высокую температуру факела, в метоле ИСПС мало выражены эффекты самообращения и са-мопоглощепия, которые характерны для дуговых и плазменных источников спета. Это подтверждается тем, что линейность градуировочных графиков сохраняется в большом интервале порядков (до 4- 5) [c.71]

    Разогрев электродов и их испарение в дуге переменного тока происходит менее интенсивно, что приводит к небольшому повышению температуры плазмы, так как в ней меньше паров веществ, ионизирующихся легче, чем воздух. Стабильность такой дуги значительно выше, чем при питании постоянным током. [c.60]

    Области применения плазнотронов весьма широки. Это — химическая промышленность, где высокая температура плазмы позволяет проводить реакции в газовой фазе с большой скоростью и полнотой металлургия — плавление и переплав металлов, сварка и резка металлов, особенно цветных и тугоплавких скоростное бурение горных пород напыление — плазменное нанесение антикоррозионных, жаростойких и износостойких покрытий стен-дьл для испытаний материалов на ударные тепловые нагрузки, получение особо чистых порошков и выращивание монокристаллов. [c.243]

    Возможности эмиссионного метода определения металлов значительно расширились благодаря применению плазмофонов, в которых температура плазмы достигает 1000 К. При такой температуре можно получить эмиссию атомов таких элементов, как титан, хром, медь, кобальт, никель, молибден и т. д. Современные плазмотроны позволяют определить до 50 и более элементов с пределом обнаружения от 1 до 100 нг/мл. [c.249]

    Джеймс и Си.мпсои [7.40] опубликовали анализ полученных ими характеристик разряда на основе (7.1) с учетом зависимостей Уф от времени и координаты 2 в предположении однородной температуры. Плазма замагничека слабо  [c.296]


Смотреть страницы где упоминается термин Температура плазмы: [c.36]    [c.10]    [c.14]    [c.10]    [c.14]    [c.185]    [c.189]    [c.41]    [c.359]    [c.664]    [c.36]    [c.615]    [c.489]    [c.282]    [c.298]   
Эмиссионный спектральный анализ Том 2 (1982) -- [ c.2 , c.166 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Плазма



© 2024 chem21.info Реклама на сайте