Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая хроматография как метод исследования физико-химических свойств веществ

    Помимо широкого использования для аналитических и препаративных целей, газовая хроматография находит важное применение как метод быстрого и удобного исследования физико-химических свойств различных веществ и взаимодействия их между собой (определение коэффициентов активности, теплот адсорбции, теплот комплексообразования и др.). [c.233]


    Измерение удельных удерживаемых объемов лежит в основе исследования физико-химических свойств веществ методом газовой хроматографии, так как они являются такими же характерными константами, как температура плавления (кипения), показатель преломления и плотность. [c.166]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]


    Из всех разнообразных применений газовой хроматографии, сделавших ее незаменимым инструментом в руках химика, хроматографическое исследование нефти и продуктов ее переработки занимает особое место. Это объясняется, с одной стороны, тем, что в нефти содержится огромное множество индивидуальных вещ,еств с близкими физико-химическими свойствами, выделение которых представляет собой задачу значительной трудности [1, 2]. С другой стороны, газовая хроматография, будучи высокоэффективным и высокоселективным методом разделения, в состоянии использовать незначительные различия как в летучести веществ, таки в их геометрической структуре, не говоря уже о возможности регулирования относительной летучести разделяемых компонентов путем соответствующего подбора сорбирующей среды. Более того, углеводороды представляют для газовой хроматографии наиболее простой объект исследования, поскольку в этом случае, вследствие большей инертности молекул, резко сокращается число факторов, оказывающих существенное влияние на удерживание и характер размытия зон. Так, упрощаются требования, предъявляемые к твердому носителю, выбор оптимальной неподвижной фазы становится более строгой процедурой. Не случайно поэтому экспериментальная проверка многих теоретических положений газовой хроматографии осуществлялась на примере именно углеводородных систем. [c.5]

    Основными физико-химическими характеристиками адсорбентов являются, с одной стороны, их структурные характеристики, часто не зависящие или мало зависящие от свойств адсорбирующихся веществ (удельная поверхность, пористость) и, с другой стороны, свойства, определяемые в основном природой системы адсорбент — адсорбат (энергия адсорбции, изотерма адсорбции и т. п.). Все эти величины обычно определяются при помощи адсорбционных опытов в статических условиях. Однако адсорбционные измерения часто бывают весьма длительными и требуют много времени для завершения и получения окончательного результата. В особенности это относится к калориметрическим определениям дифференциальных теплот адсорбции, требующим сложной аппаратуры, весьма чувствительной к колебаниям внешних условий. В послед нее время появляется довольно много работ по газо-хроматографическому исследованию изотерм адсорбции [1]. В ряде работ показано, что хроматографический метод позволяет быстро при некоторых допущениях определить изотерму адсорбции в удовлетворительной близости к изотермам, измеренным в статических условиях в вакуумной аппаратуре. Гораздо в меньшей степени исследованы возможности определения теплот адсорбции по данным газовой хроматографии [2], так как в лабораториях, занимающихся газовой хроматографией, обычно нет калориметров, позволяющих для сопоставления непосредственно измерять теплоты адсорбции для тех же систем. [c.37]

    В связи с полупромышленным использованием препаративной хроматографии для получения чистых веществ возникает необходимость проанализировать возможности этого метода с точки зрения чистоты получаемых продуктов и производительности хроматографов. Чистота продуктов, конечно, сильно зависит от селективности сорбента. Анализ литературных данных показывает, что при разделении многокомпонентных смесей чистота выделяемых продуктов обычно не ниже 99,0—99,5%, в отдельных случаях 99,99%. Такая чистота веществ вполне достаточна для решения большинства практических задач применения чистых соединений для изучения химических реакций, исследования оптических и масс-спектров, измерения физико-химических характеристик, калибровки аналитических приборов и т. д. Необходимость в более чистых веществах возникала до сих пор крайне редко, главным образом в тех случаях, когда примесь обладает особыми свойствами, мешающими использованию основного компонента. В частности высокие требования предъявляются к полупроводниковым материалам, но их очистка методом газовой хроматографии в широких масштабах до сих пор не практикуется. Таким образом, чистота продуктов, получаемых на препаративных хроматографах, является вполне достаточной, хотя не исключено, что в будущем возникнет потребность в более чистых материалах. [c.201]


Смотреть страницы где упоминается термин Газовая хроматография как метод исследования физико-химических свойств веществ: [c.438]   
Смотреть главы в:

Основы газовой хроматографии -> Газовая хроматография как метод исследования физико-химических свойств веществ




ПОИСК





Смотрите так же термины и статьи:

Вещество химические свойства

Газовая хроматография хроматографы

Газовые хроматографы для физико-химических исследований

Метод веществам

Метод газовой хроматографии

Метод свойствам

Методы физико-химические

Свойства веществ

Физико-химические методы исследования

Химические и физико-химические методы

Химический ое не ная химическая вещества

Хроматограф газовый

Хроматография газовая

Хроматография методы

газовая химическая



© 2025 chem21.info Реклама на сайте