Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность и теплопроводность металлов

    Металлы образуются из атомов электроположительных элементов. В сплавах определенные места в решетке могут быть заняты либо атомами отдельного компонента, либо различными видами атомов. Высокая электропроводность и теплопроводность металлов обусловлены движением свободных электронов через пространственную решетку. [c.583]


    Электропроводность и теплопроводность металлов [c.218]

    Электропроводность и теплопроводность металлов объясняются подвижностью электронов неполностью заполненных зон, обусловленной тем, что в этих зонах к уровням, занятым электронами, вплотную примыкают свободные уровни, на которые могут переходить (возбуждаться) электроны. [c.91]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]

    Табл. 2 показывает также, что электропроводность и теплопроводность металлов не слишком сильно (не более, чем в 2,5 раза) меняются при плавлении. Подобные же результаты были получены [9] для Fe, Со и Ni, у которых отношения Ятв/иж составляют соответственно 1,07, 1,11 и 1,14. Мало изменяются при плавлении и магнитные восприимчивости N1 и Со (9]. [c.14]


    Чрезвычайно высокие по сравнению с другими типами кристаллов значения электропроводности и теплопроводности металлов указывают на высокую подвижность и большую свободу электронов в их пространственной структуре. С точки зрения строения атомов типич- [c.79]

    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]

    Закон зависимости плотности тока термоэлектронной эмиссии от температуры теоретически установил и экспериментально проверил Ричардсон [148]. Он дал два теоретических вывода этой зависимости. Первый вывод основан на представлениях электронной теории металлов, созданной для объяснения явлений электропроводности и теплопроводности металлов, контактной разности потенциалов, эффекта Холла и т. д. Согласно этой теории, в металлах, кроме электронов, крепко связанных с атомами, [c.77]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование [c.206]


    Из высокой электропроводности и теплопроводности металлов можно сделать заключение, что, но крайней мере, часть электронов имеет возможность свободно перемещаться но кристаллу и уже под действием слабого электрического поля пли небольшого градиента (перепада) температуры лю кет бразовывяп ся п.анравлеипый поток электроно (Друде, 1902 г.). Согласно теорпп Друде, строение металлов можно представить себе как совокупность положительно. аряже .иых попов (атомных остовов кристаллической структуры), между которыми свободно перемещаются электроны, подчиняющиеся газовым законам ( элект-ронный газ ). [c.197]

    В кристаллах металлов в узлах находятся положительные ионы металлов, а в междоузлиях — электронный газ, способный к передвижению по решетке под действием разности потенциалов или разности температур. Это обусловливает большую электропроводность и теплопроводность металлов. Большинство чистых металлов обладает высокой пластичностью. Это объясняется отсутствием направленности металлической связи, поскольку в узлах решетки находятся ионы одного знака. Как уже говорилось, чистые металлы-элементы кристаллизуются лишь в трех структурах с плотнейшей упаковкой частиц гексагональной (КЧ = 12), гранецентрированной кубической (КЧ = 12), объемноцентрирован-ной кубической (8 ближайших соседей на расстоянии и 6 — на расстоянии 1,15го). [c.293]

    Металлы — вещества с сильно делокализованными электро-намп. Делокализация обусловлена тем, что количество низких по энергии орбиталей у металлов значительно больше числа имеющихся валентных электронов. Высокие электропроводность и теплопроводность металлов и нх блеск объясняются высокой подвижностью электронов на делокализованных орбиталях, а большая пластичность — наличием в их структуре плоскостей скольжения и минимальной направленностью металлических связей. [c.119]

    Задолго до развития теории квантов в XIX в. была разработана теория свободных электронов в металлах. Эта теория исходила из представления, что в металлическом кристалле валентные электроны атомов могут почти свободно, т. е. почти не взаимодействуя с атомными остатками, передвигаться по кристаллическо11 решетке. В э.тектрическом поле эти электроны, названные электронами проводимости, переносят ток, в отличие от валентных электронов атомных остатков. На примерах особенно одновалентных металлов (натрий, Атедь и др.) с помощью этой теории выведены некоторые основные законы физики, например закон Ома, закон Видемана—Франпа (о прямой пропорциональности между электропроводностью и теплопроводностью металла) и др. [c.263]


Смотреть страницы где упоминается термин Электропроводность и теплопроводность металлов: [c.101]    [c.198]   
Смотреть главы в:

Курс общей и неорганической химии -> Электропроводность и теплопроводность металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы теплопроводность

Металлы электропроводность



© 2024 chem21.info Реклама на сайте