Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка от серы нефтезаводских газов

    Очистка от серы нефтезаводских газов [c.56]

    Разработана [5] технология очистки нефтезаводских газов прямым окислением сероводорода в серу непосредственно в очищаемом углеводородном газе. Этот процесс позволяет обеспечить степень очистки газа на 99,8% в одну стадию. При этом по сравнению с традиционной технологией достигается существенное снижение затрат. Удельные капитальные вложения на получение 1 т товарной серы снижаются в 3...3,5 раза, себестоимость выпуска серы уменьшается в 2-3 раза. [c.112]


    Высокая экономическая эффективность технологических установок получения серы прямым окислением сероводорода по сравнению с традиционной технологией, используемой в нефте- и газопереработке, обеспечивается за счет исключения стадии предварительного концентрирования сероводорода на блоках МЭА-очистки и, следовательно, соответствующих капитальных и эксплуатационных затрат блока МЭА-очистки и регенерации раствора МЭА (табл. 4.6). При существующей схеме очистки нефтезаводских газов от сероводорода на стадию предварительного концентрирования сероводорода приходится не менее 55% капитальных и 60% эксплуатационных затрат. В табл. 4.7. приведена структура затрат в производстве серы на примере Уфимского НПЗ. [c.113]

    Существуют многочисленные методы удаления сероводорода из природных или нефтезаводских газов, которые можно разбить на четыре группы 1) полностью нерегенеративные 2) регенеративные только по поглотителю 3) регенеративные по поглотителю и сероводороду 4) регенеративные по поглотителю, осуществляемые с получением элементарной серы. Для очистки природных и нефтезаводских сернистых газов применяются главным образом процессы третьей группы. [c.347]

    В нефтезаводских газах, кроме сероводорода и двуокиси углерода, могут содержаться примеси ацетиленовых и диеновых углеводородов, органических соединений серы, кислорода, окиси углерода и воды. Сероводород, органические соединения серы и двуокись углерода в присутствии влаги вызывают коррозию аппаратуры и оборудования установок, а также затрудняют низкотемпературную переработку газов. При низкотемпературных методах разделения требуется не только глубокая осушка сырья, но и его тщательная очистка от СОг и соединений серы до их остаточного содержания не более 0,003—0,005%. [c.33]

    Сырье (природный или нефтезаводской газ) сжимается компрессором до 2,6 МПа, подогревается в подогревателе,в конвекционной секции печи —реакторе до 300 — 400 С и подается в реакторы Р— 1 и Р —2 для очистки от сернистых соединений. В Р — 1, заполненном алюмокобальтмолибденовым катализатором, осуществля — етс.ч гидрогенолиз сернистых соединений, а в Р-2 — адсорбция образующегося сероводорода на гранулированном поглотителе, состоящем в основном из оксида цинка (481 — Zn, ГИАП— 10 и др.) до остаточного содержания серы в сырье до < 1 ppm. В случае [c.163]

    Институт ВНИИпромгаа исследовал экономику производства серной кислоты из различных видов сырья. Если принять приведенные затраты на производство На804 из природной серы равными 100%, то затраты на получение серной кислоты из Н З нефтезаводских газов составят 31%. По мере дальнейшего совершенствования и внедрения новых процессов очистки нефтепродуктов от серы, и особенно широкого внедрения гидроочистки и гидрокрекинга тяжелых остатков, производство серы из нефти будет стремительно расти и себестоимость ее будет снижаться. Если 10—15 лет тому назад серу в нефти рассматривали как зло и даже задерживали добычу сернистых п особенно высокосернистых нефтей", то теперь нефть можно рассматривать не только как сырье для производства топлива, но и как источник получения дешевой серы и ее органических соединений. Ряд западно-европейских стран, не имеющих своей нефти и промышленных запасов природной серы, специально закупают нефть с высоким содержанием серы. [c.12]


    Процесс Сульфинол позволяет удалять H2S, OS, RSH, S2, а также СО2 полностью или частично из природных и нефтезаводских газов. Примерный состав абсорбента 30 % диэтаноламина, 64 % сульфолана, 6 % воды. Можно применять моно- или диизопропаноламин. В составе смешанного растворителя амин выполняет роль хемосорбента, сульфолан и вода — физического сорбента. В процессе Сульфинол удаляют OS, S2 и меркаптаны. В условиях очистки растворитель химически и термически стабилен, в несколько раз менее коррозионно агрессивен, чем водный раствор моноэтаноламина. Регенерацию осуществляют при 65 °С. В принципе технологическая схема не отличается от схемы моноэтаноламиновой очистки. После очистки способом Сульфинол в газе содержится 0,0004 об. % общей серы и 0,005 об. % СО2. [c.16]

    Сырье (природный или нефтезаводской газ) сжимается компрессором до 2,6 МПа, подогревается в подогревателе,в конвекционной секции печи-реакторе до 300 - 400 °С и подается в реакторы Р-1 и Р-2 для очистки от сернистых соединений. В Р-1, заполненном алюмоко-бальтмолибденовым катализатором, осуществляется гидрогенолиз сернистых соединений, а в Р-2 - адсорбция образующегося сероводорода на гранулированном поглотителе, состоящем в основном из оксида цинка (481 - Zn, ГИ АП— 10 и др.) до остаточного содержания серы в сырье до < 1 ppm. В случае использования в качестве сырья бензина последний подают насосом и на входе в Р-1 смешивают с водородсодержащим газом. [c.512]

    Процесс тайлокс был разработан фирмой Копперс 112—14] в конце 20-х годов и осуществлен в промышленном масштабе. Он нашел широкое применение во многих странах для очистки различных промышленных газов. В США, где искусственный газ в значительной степени вытеснен природным, процесс используется главным образом для очистки коксового газа на металлургических заводах, но до сравнительно недавнего времени процесс использовали и для очистки природного и нефтезаводских газов. В странах с ограниченным применением природного газа процесс тайлокс используется весьиш широко и имеется ми ого действующих установок мощностью от 28 ООО до 1,3 млн. в сутки. В 1945 г. суммарная мощность действующих установок тайлокс по газу превышала 7,5 млн. в сутки, а производство серы достига.по (э1 т в сутки. [c.209]

    В Канаде пущен большой завод, вырабатываюищй жидкое топливо из битуминозных песков. На заводе перерабатывают в сутки 100 000 т -битуминозных песков, из которых извлекают около 10000 т битума. В процессе термического крекинга битума и последующей переработки дистиллятов ползгчают около 7500 жидкого топлива в сутки. Нефтезаводские газы используют для производства 1,8 млн. м водорода в сутки, применяемого в процессе переработки и облагораживания дистиллятов, получаемых в процессе крекинга. Сероводород, образующийся в процессе очистки дистиллятов от серы методом гидрогенизации, ис- пользуют для производства элементарной серы. Завод выпускает 300 т серы в сутки. [c.215]

    Несомненно, что в книге такого объема невозможно детально описать все известные процессы очистки газа. Поэтому основное место в книге занимают процессы, имеющие важное промышленное значение особое внимание уделяется процессам, применяемым в различных отраслях. Две главы книги посвящены этаноламиновой очистке газов от сероводорода и двуокиси углерода, так как эти процессы широко применяются для очистки топливных газов (природного, нефтезаводского и искусственного) кроме того, они составляют важную часть многих химичес1 их производств (например, производства сухого льда, аммиака, водорода). Значительное место в книге уделяется извлечению двуокиси серы, поскольку эта проблема приобретает все большее значение в области борьбы с загрязнением воздуха с этой проблемой приходится сталкиваться и при сжигании высокосернистых топлив, а также при плавке сульфидных руд. Извлечение из топливного газа нафталина рассматривается очень кратко, поскольку это ваншо только при очистке газа, полученного из угля. [c.5]

    Наиболее логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Одпако четко провести такую классификацию не всегда возможно, так как при отдельных процессах протекают одновременно различные реакции и в ряде случаев весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают или по виду удаляемых примесей, или по характеру химической реакции. Именно этот не всегда последовательный принцип и принят нри дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых соединений, содержащихся в топливных, нефтезаводских и синтез-газах, в сероводород или кислородные соединения серы б) удаление окиси углерода из синтез-газа или инертных газов путем превращения в двуокись углерода или метан в) превращение ацетилена, содержащегося в олефиновых газовых потоках, в этилен методом избирательного гидрирования наконец, г) окисление и восстановление многочисленных нежелательных органических и неорганических соединений, содержащихся в отходящих газах промышленности. Процессы, предназначенные для каталитического окисления сернистых соединений (как сероводорода, так и органических), подробно рассмотрены в главе восьмо , так как эти процессы тесно связаны с сухой очисткой окисью железа и поэтому в большей мере относятся к сухим окислительным, процессам очистки от серы. [c.325]



Смотреть страницы где упоминается термин Очистка от серы нефтезаводских газов: [c.62]    [c.220]    [c.8]    [c.318]   
Смотреть главы в:

Особенности переработки сернистых нефтей и охрана окружающей среды -> Очистка от серы нефтезаводских газов




ПОИСК





Смотрите так же термины и статьи:

Сера газов



© 2025 chem21.info Реклама на сайте