Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение органических сернистых соединений в сероводород

    Присутствие водяных паров (до 50% объема газа) и аммиака (до 16 г м ) в поступающем газе пе влияет на протекание процесса. По литературным данным сероводород в концентрациях до 4,6 г м также не оказывает вредного влияния на активность катализатора. Однако при более высоких концентрациях сероводорода п температуре выше 370° С окись углерода взаимодействует с сероводородом, образуя сероокись углерода, и полнота превращения органических сернистых соединений снижается [15]. [c.325]


    Важнейшие химические реакции каталитического превращения органических сернистых соединений в сероводород можно изобразить следующими уравнениями. [c.326]

    Наиболее логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Одпако четко провести такую классификацию не всегда возможно, так как при отдельных процессах протекают одновременно различные реакции и в ряде случаев весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают или по виду удаляемых примесей, или по характеру химической реакции. Именно этот не всегда последовательный принцип и принят нри дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых соединений, содержащихся в топливных, нефтезаводских и синтез-газах, в сероводород или кислородные соединения серы б) удаление окиси углерода из синтез-газа или инертных газов путем превращения в двуокись углерода или метан в) превращение ацетилена, содержащегося в олефиновых газовых потоках, в этилен методом избирательного гидрирования наконец, г) окисление и восстановление многочисленных нежелательных органических и неорганических соединений, содержащихся в отходящих газах промышленности. Процессы, предназначенные для каталитического окисления сернистых соединений (как сероводорода, так и органических), подробно рассмотрены в главе восьмо , так как эти процессы тесно связаны с сухой очисткой окисью железа и поэтому в большей мере относятся к сухим окислительным, процессам очистки от серы. [c.325]

    Органические сернистые соединения значительно менее реакционноспособны, чем сероводород поэтому при обычных процессах извлечения сероводорода содержание их не снижается или снижается незначительно. Некоторые адсорбционные и окислительные процессы, применяемые для удаления сероводорода, позволяют частично удалить и органическую серу (см. главы восьмую и девятую), но, как правило, для удаления органических сернистых соединений из болз.шинства газовых потоков необходимо применять каталитические методы превращения при высоких температурах. При большинстве каталитических процессов удаления органической серы требуется, чтобы поступающий газ практически не содержал сероводорода. Однако при некоторых катализаторах присутствие сравнительно значительных количеств сероводорода в поступающем газе снижает их активность. Такие катализаторы имеют особенно важное экономическое значение при очистке синтез-газов, когда предварительная очистка от сероводорода обычными методами для возможности последующего удаления органических сернистых соединений вызывает необходимость охлаждения и повторного нагрева всего количества газа, поступающего на очистку. [c.319]


    Важнейшие реакции каталитического превращения органических сернистых соединений б сероводород можно представить уравнениями. [c.320]

    Основное направление химической реакции каталитической очистки заключается в превращении органических сернистых соединений в сероводород по схеме [c.211]

    ПРЕВРАЩЕНИЕ ОРГАНИЧЕСКИХ СЕРНИСТЫХ СОЕДИНЕНИИ В СЕРОВОДОРОД [c.318]

    Процесс очистки исходного газа от сернистых соединений является непрерывным и включает каталитическое превращение органических сернистых соединений в сероводород на катализаторе за счет гидрирования и последующее поглощение сероводорода на оксиде цинка. [c.12]

    Для полного превращения органических сернистых соединений в сероводород и его дальнейшего окисления в сернистый ангидрид необходимо установить перед основ- [c.79]

    Конверсия окиси углерода сопровождается превращением органических сернистых соединений, содержащихся в технологическом газе, в сероводород  [c.43]

    Алюмохромовые и алюмо-хром-медные катализаторы. Алюмохромовый катализатор применяется для удаления сероокиси углерода и сероуглерода из синтез-газов, отличающихся высоким содержанием окиси углерода. Этот катализатор промотирует избирательный гидролиз сернистых соединений практически без сопутствующего превращения окиси углерода присутствие сероводорода в поступающем газе не влияет на активность катализатора. Практически полное превращение органических сернистых соединений достигается при температуре 316—427 , повышенных давлениях и объемных скоростях 250—1000 час [26]. Типичные условия, нри которых обеспечивается удаление сероокиси углерода из газового потока, представляющего-смесь углеводородов и окиси углерода [27] следующие. [c.335]

    Каталитическое окисление особенно удобно для удаления горючих примесей пз газовых потоков, содержащих эти примеси в концентрациях ниже пределов горючести поэтому этот процесс находит широкое применение для борьбы с загрязнением атмосферы и уничтожения нежелательных запахов [40, 41]. Процессы каталитического окисления и восстановления особенно целесообразны в тех случаях, когда подлежащие удалению примеси образуют безвредные продукты реакции, как, например, воду, азот, двуокись углерода. Однако они весьма полезны и для превращения вредных и токсичных примесей в мепее вредные соединения, например, для окисления сероводорода и органических сернистых соединений в сернистый ангидрид. [c.340]

    Некоторые сернистые соединения, входящие в состав сырых нефтей (элементарная сера, сероводород, меркаптаны), и продукты превращений,, которым подвергаются в процессах переработки органические сернистые соединения, являются источником интенсивной коррозии оборудования нефтеперерабатывающих заводов. [c.270]

    К настоящему времени в области катализа реакций с участием сернистых веществ накоплен значительный материал. Обобщение и использование этой информации могло бы стать источником прогнозирования при поиске эффективных катализаторов и создании новых процессов. Однако в литературе очень мало обобщающих работ, посвященных этой проблеме. В настоящей монографии систематизированы и критически обобщены имеющиеся сведения о ряде реакций синтеза и превращений органических соединений серы, при этом рассмотрение ограничено гетерогенно-каталитическими реакциями, лишь небольшое место в книге отведено гомогенно-каталитическим реакциям, протекающим в растворах. Рассмотрены закономерности реакций синтеза тиолов из сероводорода и алканолов или алкенов, разложением диалкилсульфидов и дисульфидов и гидрированием ди- и полисульфидов. Обобщены сведения о [c.5]

    Ядами для железохромовых катализаторов конверсии СО являются сероорганические соединения, сероводород, а также соединения фосфора, мышьяка, кремния, хлора. Отрицательно на работе катализатора сказывается присутствие пыли, технического углерода. Наиболее распространенными каталитическими ядами являются сернистые соединения. Сероводород, присутствующий в исходном газе или образующийся в результате превращения сероорганических соединений (органические соединения серы в присутствии железохромового катализатора реагируют с водяным паром, образуя сероводород), реагирует с катализатором по реакции [c.138]

    Ядами для железохромовых катализаторов конверсии СО являются сероорганические соединения, сероводород, а также соединения фосфора, мышьяка, кремния, хлора. Отрицательно на работе катализатора сказывается присутствие пыли и сажи [61, 65]. Наиболее распространенными каталитическими ядами являются сернистые соединения. Органические сернистые соединения в присутствии железохромового катализатора реагируют с водяным паром, образуя сероводород. Степень конверсии зависит от количества сероорганических соединений. Если их содержание превышает 1%, то полная конверсия не достигается, и они действуют как необратимый яд. Сероводород, присутствующий в исходном газе или образующийся в результате превращения сероорганических соединений, реагирует с катализатором по реакции [c.141]


    Органические сернистые соединения превращаются в углеводороды и сероводород. Равновесие никель — сернистый никель — водород — сероводород благоприятствует образованию сернистого никеля при низких температурах и его разложению при высоких температурах [986]. Увеличение концентрации водяного пара, аналогичное повышению парциального давления водорода, способствует уменьшению степени превращения никеля в неактивный сернистый никель. Может казаться, что было бы целесообразно вычислить максимальное количество серы, которое может присутствовать в газе при различных температурах, не вызывая превращения никеля в сернистый никель. Однако разница Б энергиях различных атомов, находящихся на поверхности активного катализатора, делает ценность таких вычислений сомнительной, подобно тому, как это имеет место в случае окисления активного железа смесями водорода и водяного пара. [c.241]

    В твердых горючих сера встречается в неорганической и органической фирмах. В минеральной части угля сера находится преимущественно в форме пирита и р незначительных количествах в форме сульфатов кальция, натрия, железа и магния. Органическая сера является составной частью угольного вещества и происходит из различных серусодержащих веществ, подвергшихся процессу обуглероживания. О форме ее связи, также являющейся неоднородной, известно мало. В зависимости от условий коксования сернистые соединения подвергаются превращению и разложению, которые в основном ведут к отщеплению сероводорода. Рядом ученых [1—3] было показано, что образование сероводорода обусловливается прежде всего распадом пирита. Кроме того, было установлено [3], что выше 700° неорганическая сера, взаимодействуя с углеродом, дает соединение, стойкое к действию высокой температуры. Были предприняты попытки отдельно исследовать реакции неорганической и органической серы. Для этого уголь коксовали, предварительно извлекая из него неорганические сернистые соединения или повышая их содержание добавкой пирита. При этом оказалось, что при 545° бгльшая часть пиритной серы [c.51]

    Хотя процесс очистки окисью железа удовлетворяет наиболее жестким требованиям в отношении остаточного содержания сероводорода в газах для бытового потребления, его недостатки, а именно низкое качество получаемой серы и невозможность обеспечить очистку от органических сернистых соединений, стимулировали разработку сухих процессов, при которых сероводород и органические сернистые соединения каталитически превращаются в кислородные соединения серы, удаляемые затем водными поглотительными растворами для превращения в чистые сульфаты и элементарную серу. Ниже приводятся важнейшие из этих процессов. [c.198]

    Таким образом, образование сернистых соединений можно понимать как вторичный процесс, не связанный с нефтеобразова-нием и, так сказать, параллельный ему. Высказывались и противоположные гипотезы, согласно которым сера является в нефтях унаследованным компонентом и что первоначально образовавшиеся нефти содержат серу как обязательный компонент, исчезающий впоследствии на длинном пути ее превращения. Из этого как будто следует, что серой должны быть богаты геологические молодые нефти, более или менее близкие к исходному веществу нефти, тогда как нефти древние, метановые, могут серы и не содержать. Это соображение плохо вяжется с тем, что очень многие третичные нефти практически серы не содержат, тогда как иногда древние нефти, наоборот, богаты серой. Примерами первых могут служить нефти Баку, Грозного и ряда других месторождений, примерами вторых могут служить сернистые нефти Второго Баку. Вместе с тем исключениями крупного масштаба являются кайнозойские нефти Калифорнии, Мексики и другие, содержащие много серы и бессернистые палеозойские нефти северо-восточных штатов США. Связь между серой и углеводородами нефти часто понималась таким образом, что сера имеет белковое происхождение и должна принимать участие-в тех процессах, которые переводят живое вещество в нефть.. Между техм хорошо известно, что разложение белка связано с выделением серы в виде сероводорода, не принимающего участие в последующих превращениях органического вещества. Ввиду того, что сероводород минерального происхонодения может внедряться в углеводороды, проходя через стадию элементарной серы, нет никакой необходимости отводить белковой сере заметную роль. Все подобные гипотезы отличаются тем, что не объясняют, почему осернение нефти не является обязательным процессом, поскольку в природе имеются значительные месторождения бес-сернистой нефти. Кроме того, в подавляющем большинстве случаев сернистость нефти есть явление региональное, охватывающее громадные области, что говорит о какой-то общей причине явления. Факт восстановления сульфатов микроорганизмами есть. [c.179]

    Окисные медь-хром ванадиевые катализаторы. Эти катализаторы, разработанные Хаффом и Логаном [28, 29], способствуют превращению органических сернистых соединений в сероводород, который вместе с сероводородом, первоначально присутствовавшим в газе, связывается катализатором в виде сульфидов металлов. Таким образом, превращение и фактическое удаление сернистых соединений из газа достигаются за одну ступень. Катализатор необходимо периодически регенерировать воздухом для превращения сульфидов снова в окислы. [c.336]

    Полученный газ на 90—95% (в пересчете на сухой газ) состоит из окиси углерода и водорода. В пед1 содержатся также двуокись углерода, метан, азот, сероводород, сероокись углерода и органические сернистые соединения серы, а также остается непрореагировавший водяной пар. Необходимая глубина превращения без применения катализатора достигается за счет проведения процесса при высокой температуре. Процесс ведется в автотермичных условиях тепло получается за счет экзотермических реакций газификации с образованием окиси и двуокиси углерода. [c.100]

    Добавки оксида железа используют и для активирования других катализаторов, применяемых для окисления сероводорода в области средних температур. Так, исследование каталитических свойств оксида алюминия в реакции парциального окисления сероводорода в элементную серу показало, что алюмооксидные катализаторы малоактивны, неселективны и быстро дезактивируются в процессе за 5 ч работы активность снижается почти вдвое [26]. Введение в состав оксида железа в количестве 0,5-10% масс, приводит к резкому повышению конверсии сероводорода и повышает стабильность работы катализатора. Максимальная степень превращения сероводорода в элементную серу на алюмооксидном катализаторе, содержащем 0,5% масс, оксида железа, при температуре 320 С составляет 95%. Введение оксида железа в состав титаноксидного катализатора также повышает активность последнего. При содержании оксида железа 0,1% масс, и температуре 285°С конверсия сероводорода составила 99,5% при селективности близкой к 100% [10,27]. Оксид железа входит и в состав других сложных катализаторов окисления сероводорода и органических сернистых соединений [26]. [c.67]

    Описан [12] видоизмененный процесс Карпентера-Ивенса, использо вавшийся для удаления небольших количеств органических сернистых соединений (184 мг м ) из каменноугольного газа. В качестве катализатора применяли никелевую стружку. При рабочей температуре около 4б0° С н объемной скорости 2000 превращение сероуглерода в сероводород достигало около 90%. Катализатор периодически регенерировали продувкой воздухом. [c.322]

    В синтез-газах, полученных частичным окислением содержащего серу углеводородного топлива, в качестве важнейшего органического сернистого соединения присутствует сероокись углерода, которая в присутствии некоторых катализаторов легко прелращается в сероводород в результате реакций гидрирования илп гидролиза. Окиспожелезные катализаторы обладают активностью одновременно в реакциях водяного газа и превращения сероокиси углерода в сероводород, тогда как окисные алюмохромовые и алюмо-хром-медные катализаторы можно использовать для избирательного гидролиза сероокиси углерода в присутствии больших количеств окиси углерода. Кроме того, разработаны катализаторы, содержащие окислы меди, хрома и ванадия, для удаления сероводорода п органических сернистых соединении пз синтез-газа. [c.327]

    Вследствие протекания на катализаторе ряда побочных реакций разложение органических сернистых соединений приводит к превращению серы на 15—20% в сероводород и 2—3% в серный ангидрид остальная сера превращается в сернистый ангидрид. Остаточная сера в очищенном газе состоит главным образом из тиофенов, наряду с которыми присутствуют 34—46 мг1нм других сернистых соединений. [c.205]

    Органическ е сернистые соединен я значительно д енее реакцион ю-способны, чем сероводород поэтому при обычных процессах извлече ия сероводорода содержание их не снижается вообще или снижается незначительно. Некоторые адсорбционные и окислительные процессы, применяемые для удаления сероводорода, позволяют частично удалить и органическую серу (см. главы восьмую и девятую), но, как правило, для удаления органических сернистых соединений из большинства газовых потоков необходимо применять каталитическ е методы превращения нри высоких температурах. При большинстве каталитических процессов удаления органической серы требуется, чтобы ноступающи газ практически не содержал сероводорода. [c.325]

    Пластические свойства, придаваемые битуму серой, быстро теряются, и происходит превращение пластического материала в кристаллический. Добавление к битуму вместо элементарной серы полиметилентетрасуль-фида сопровождается также возрастанием пенетрации и понижением температуры хрупкости (по Фраасу). Однако пластические свойства полимера сохраняются значительно дольше. Недостатком простых органических полисульфидов является их низкая устойчивость к действию высоких температур, имеющих место при обычном использовании битумов. Себестоимость осерненного битума оказалась высокой, так как расход серы составил 20—25%- Поэтому производство осерненного битума широко не распространилось. При обработке сырья серой выделяется значительное количество сероводорода и летучих сернистых соединений. В готовом битуме остается лишь небольшое количество серы. По-видимому, сера, отнимая водород, превращает простые связи в двойные, а затем образовавшиеся ненасыщенные соединения полимеризуются. [c.156]

    Процесс основан на многоступенчатом сжигании мазута при малых избытках воздуха (35—45% от теоретически необходимого для1 полного сжигания топлива) с превращением его в малокалорийный топливный газ и извлечением из газов сгорания серы, а также ценных компонентов, содержащихся в золе. Органическая часть топлива при сжигании превращается главным образом в водород и окись, углерода, сернистые соединения в сероводород. Часть углерода топлива (около 2%) выделяется в виде сажи. Полученный газ с теплотворной способностью 4,6—8,3 МДж/м охлаждается с использованием тепла для выработки пара высокого давления, очищаете от сажи и золы, промывается водой, а затем очищается от НаЗ-и 80а жидкими сорбентами. Сероводород и сернистый ангидрид используются в производстве серы или серной кислоты. Очищенный газ направляется в топку котла. Процесс может быть осуществлен на движущемся слое кокса или неорганическом теплоносителе, обладающем большой теплоемкостью и высокой механическо прочностью. [c.138]

    Как и п[)и всяком термическом процессе превращения органических веществ, при сухой перегонке углей и сланцев имеют место два основных типа химических реакций распад и уплотнение. В первую очередь начинают распадаться наиболее термически неустойчивые вещества с наибольшим содержанием кислорода. Опи распадаются при относительно низких температурах с выделением углекислоты и воды и образованием высокомолекулярных веществ, обедненных кислородом. При повышеттии температуры, однако, и эти вещсства подвергаются распаду. При этом, наряду с дезоксидацией, с продолжающимся выделением углекислоты и воды, наступают более глубокие изменения с образованием, с одной стороны, низкомолекулярных углсводг>родов, сероводорода, водорода и ам-мхшка и, с другой стороны, более высокомолекулярных продуктов, представляющих собой углеводороды разнообразного строения, кислородные, сернистые и азотистый соединения, входящие в состав паров смолы. [c.414]

    Тем не менее к настоящему времени имеется уже существенный научный задел в области каталитического синтеза органических соединений серы. Разработанные процессы, как правило, одностадийны, произюдительны, высокоселективны и экологически безопасны. В них используется доступное сырье -вырабатываемые промышленностью алканолы, эфиры, углеводороды содержащиеся в природных продуктах алкил меркаптаны, тиофены, тиациклоалканы образующиеся при переработке сернистого сырья сероводород, диоксид серы, диалкилдисульфиды. Это является основой для формирования в ближайшем будущем в России новой отрасли химической промышленности -каталитического производства нужных для народного хозяйства сернистых соединений. Сделанные на основе обобщенного материала заключения о механизмах реакций синтеза и превращений серосодержащих соединений важны и для дальнейшего развития относительно нового научного направления -катализа реакций органических соединений серы. [c.294]

    Происхождение пирита и марказита в угле является более сложным и разнообразным детально оно рассматривается в статье 3. Говоря кратко, тонко рассеянный пирит, вероятно, обязан своим происхождением активности отлагающих серу бактерий. Более крупные и массивные отложения обусловлены осаждением сернистого железа при взаимодействии сероводорода, получающегося при разложении растительного материала и соединений железа, растворенного в болотной водз с последующим превращением сернистого железа в нириты. Возможно, что некоторые нириты образовались путем восстановления сернокислой закиси железа органическими веществами. [c.67]


Смотреть страницы где упоминается термин Превращение органических сернистых соединений в сероводород: [c.321]    [c.328]    [c.308]    [c.62]    [c.318]    [c.325]   
Смотреть главы в:

Очистка газа -> Превращение органических сернистых соединений в сероводород




ПОИСК





Смотрите так же термины и статьи:

Органические сернистые соединения

Сернистые соединения органически



© 2024 chem21.info Реклама на сайте