Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов сухая

    Классическими примерами метода сухой очистки газов является очистка от сероводорода с помощью болотной руды (82% оксидов железа, 14% боксита, 4% древесных опилок) и активного угля. В современной технике более эффективна мокрая газоочистка, при которой, например, для очистки газа от сероводорода применяют мышьяково-содовые растворы, этаноламины, растворы фосфатов калия и др. [c.274]


    Ниже приведены технологические параметры процесса очистки газа сухим методом  [c.65]

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]

    Выбор аппарата для очистки газа зависит от многих факторов. Главными из них являются 1) свойства пыли (сухая, липкая, гигроскопическая, волокнистая и т. д.) и размеры ее частиц, [c.344]

    Углеводородные газы (природные, попутные, коксовый) содержат примеси — сернистые соединения, способные отравлять катализаторы, вызывать коррозию и загрязнение аппаратуры. Одной из первых стадий переработки газов для синтеза аммиака является очистка от сернистых соединений. В промышленности применяют несколько способов очистки газа от сернистых соединений абсорбционный, мышьяково-содовый, сухой очистки активным углем, каталитический, очистки поглотителями на основе окиси цинка. [c.46]

    Очистка газа (сухая) [c.120]

    Описанная машина совмещает функции вентилятора и пылеотделителя (подобно ротационному пылеуловителю при сухой очистке газа). Перед поступлением в дезинтегратор газ необходимо охладить до 50—60° С, а по выходе из дезинтегратора — очищать от тумана. В настоящее время дезинтеграторы вытесняются более эффективными пылеочистительными аппаратами— электрофильтрами (стр. 339). [c.337]

    Пыль весьма богата сурьмой (65—70%). Средний диаметр частиц пыли около 0,75—1,0 мк. При использовании для тонкой очистки газов сухих электрофильтров газы предварительно охлаждаются. [c.245]


    Абсорбция поглотительными. маслами (соляровое масло, газойль). Процесс очистки от ОС совмещают с улавливанием бензольных углеводородов. Отработанные поглотительные масла регенерируют дистилляцией. Способ применяется для очистки газов сухой перегонки топлива, степень очистки невысока и составляет 65—80%. [c.293]

    Оборудование для сухой очистки газа [c.210]

    Прн выборе аппаратов для очистки газа следует принимать во внимание технико-экономические показатели их работы, при определении которых необходимо учитывать степень очистки газа, гидравлическое сопротивление аппарата, расход электроэнергии, пара и воды на очистку, стоимость аппарата и стоимость очистки газа (обычно все расходы относят к 100 ж очищаемого газа). При этом должны быть приняты во внимание факторы, от которых зависит эффективность очистки влажность газа и содержание в нем пыли, температура газа и его химическая агрессивность, свойства пыли (сухая, липкая, волокнистая, гигроскопическая и т. д.), размеры частиц пыли и ее фракционный состав и пр. [c.244]

    Степень очистки — не ниже г] = 0,99 разрежение в системе р = 500 Па запыленный газ сухой и не агрессивный. [c.81]

    Цилиндрические циклоны НИИОГАЗа предназначены для улавливания сухой пыли аспирационных систем. Их рекомендуется использовать для предварительной очистки газов и устанавливать перед фильтрами или электрофильтрами [c.285]

    Сравнение ПРП с циклонами свидетельствует о преимуществах ротационных пылеуловителей. Так, габаритные размеры циклона в 2-4 раза, а удельные энергозатраты на очистку 1000 м на 20-40% больше, чем для ПРП при прочих равных условиях. Однако широкого распространения пылеуловители ротационного действия не получили из-за относительной сложности конструкции и эксплуатации по сравнению с другими аппаратами сухой очистки газов от механических загрязнителей. [c.292]

    Окись цинка, окись цинка на носителе — применяются для очистки газов от сероводорода, алкилмеркаптанов, дисульфида, тиофенов и СО. Процесс проводится при температурах 300—400 °С, давлении до 7,3 МПа, объемной скорости подачи сухого газа 500—2000 ч 1. [c.403]

    Схема установки очистки газа от диоксида углерода этим методом приведена на рнс. 14. Газ промывают холодной водой в башнях с насадкой (скрубберах) под давлением 1,5—2,5 МПа, так как растворимость дноксида углерода в воде возрастает с повышением давления. При этом из газа удаляется частично и сероводород, растворимость которого также увеличивается. Затем давление снижают, и из воды выделяется (десорбир -ется) газ, содержащий до 85% диоксида углерода (остальное — водород, азот, сероводород), который используют для получения сухого льда, карбамида, соды и других продуктов. [c.48]

    Для тонкой очистки газов от сероводорода применяют сухие методы очистки с использованием оксида железа РеоОз-нЗНаЗ — РегЗз+НаО. [c.54]

    Электрофильтры используют для наиболее полной очистки газа от мельчайших частиц и капелек (размером от 0,005 мкм) при малой их концентрации. Они работают обычно при скорости газа 0,2—1,5 м/с. Эти аппараты применяют, например, при переработке полиметаллических руд (извлечение ценных металлов из газов), в производстве сажи, для улавливания цементной и угольной пыли. В производстве серной кислоты из колчедана сухие электрофильтры используют для очистки газа от огарковой пыли, мокрые — для улавливания капелек кислоты и примесей из газа, поступающего в контактное отделение, и очистки отходящих газов. [c.230]

    Кроме того, газы содержат около 1% аммиака и 1,5—2% оксида углерода (IV). Присутствие аммиака заставляет предполагать, что при абсорбции образуется щелочной раствор. Абсорбция аммиака определяется газовой фазой и протекает очень быстро, абсорбция сероводорода в водных растворах аммиака тоже определяется газовой фазой, хотя проходит не так быстро, как абсорбция аммиака, тогда как абсорбция СО2 в воде или слабощелочных растворах определяется жидкой фазой. Эти особенности и определяют процесс селективной абсорбции двух основных примесей аммиака и сероводорода, а также таких примесей, как карбонилсульфид и цианистый водород. Однако с помощью селективной абсорбции можно удалить лишь около 90% сероводорода, поэтому необходима вторая стадия конечной очистки. Возможно, ее следует сочетать с адсорбционной очисткой на сухом оксиде железа (II). [c.144]

    Электрофильтры делятся на с у х и е, в которых улавливается сухая пыль, т. е. очистка газов происходит при температуре выше точки росы, и мокрые—-для удаления пыли, увлажненной в результате конденсации паров влаги из очищаемого газа, а также для осаждения капель и тумана. [c.241]

    Затем заполните колбу сухим диоксидом углерода из аппарата Киппа I (рис. 6) или из баллона. Для осушки и очистки газ пропустите че рез промывные склянки с раствором соды 2 и раствором концентрированной серной кислоты 3. Стеклянную газоотводную трубку опустите до дна колбы 4 и пропускайте диоксид углерода. Через некоторое время убедитесь в полноте вытеснения воздуха газом с помощью горящей лучины. Медленно вынув газоотводную трубку, закройте колбу пробкой до метки и взвесьте. Заполнение колбы диоксидом углерода произведите несколько раз, пока по результатам взвешивания не убедитесь в полноте заполнения колбы газом. [c.13]


    Б189950. Опытно-промышленные исследования по очистке газов сухим методом в рукавных фильтрах [c.236]

    При мокрой очистке газов от обжиговых печей известняка сточные воды насыщаются известью до пределов растворимости (40-44 мг-экв/дм ). Повторное использование воды в замкнутом цикле при наличии в газе углекислоты, без специальной обработки ее реагентами недопустимо, так как это приводит к зарастанию карбонадом кальция разводящих сетей и форсзшок для устранения указанного недостатка рекомендуется а) использование в качестве 2-й ступени очистки газа сухих пьш лавливающих аппаратов б) совместная очистка аспирационных газов с аглогазами в мокрых скрубберах. При этом не требуется сооружения локальной газоочистки, а содержащаяся активная известь в газах от обжиговых печей полезно используется на очистку агломерационных газов от сернистых соединений. [c.484]

    Процесс щелочной очистки газов является экономичным. Однако при высоких концентрациях в газе сероводорода и диоксида углерода (>0,3 %) перед щелочной очисткой следует использовать очистку раствором моноэтаноламина. Сухой газ и пропан-пропиленовая фракция на промышленных установках ЦГФУ и АГФУ, газы регенерации на установках гидроочистки и пирогаз на установке ЭП-300 предварительно очищаются от сероводорода и частично от диоксида углерода раствором моноэтаноламина, затем подвергаются доочистке щелочью от меркаптанов и диоксида углерода. Расход гидроксида натрия при этом не превышает 0,16 кг на 1000 м газа. [c.115]

    Процесс сухой очнстки от сероводорода активным углем основан на окислении сероводорода до элементарной серы кислородом на поверхности активного угля. Образующаяся при очистке элементарная сера отлагается в порах угля по мере заполнения поверхности угля серой процесс очистки замедляется и прекращается. Для восстановления поглотительной способности угля его промывают раствором сернистого аммония. После промывки и пропарки активный уголь вновь пригоден для очистки газа. Каталитическая очистка газа протекает в две ступени на первой ступени на катализаторе при подаче пара или водорода органические соединения серы превращаются в сероводород, а на второй ступени сероводород удаляют из газа. [c.47]

    Сочетание твердое вещество + газ соответствует процессам очистки газа от пыли, сушке, а также обжигу. Для проведения этих процессов предназначены сухие электрофильтры, аппараты, заполненные твердым исходным материалом (адсорберы), гребко-вые печи, аппараты с кипящим слоем и др. [c.6]

    Все изложенное относится и к получаемому углеводородному конденсату. Отличительной особенностью очистки газов дегазации конденсата является то, что этот газ сухой и его можно сжимать компрессорами в неантикоррозионном исполнении. [c.49]

    Реакции, идущие в газопенераторе типа Лурги , типичны для процесса сухой перегонки угля, а именно возгонка летучих углеводородов из угля и соответствующий крекинг их до метана и низших углеводоров, взаимодействие синтез-газа с образующимися при парокислородной карбонизации коксом или полукоксом, в результате чего образуются окись углерода и водород, и, наконец, реакция метанизации окиси углерода водородом под давлением. Газы, образующиеся на разных уровнях реактора, соединяются и по трубопроводу направляются в отделение очистки. Перед подачей на очистку газ охлаждается в котле-утилизаторе с получением пара, расходуемого на нужды всей установки. Охлажденный газ проходит через реактор прямой конверсии окиси углерода, в котором часть ее реагирует с избытком пара и образует двуокись углерода и водород. Смола и концентрат аммония удаляются из конденсата как в котле-утилизаторе, так и в холодильнике после реакции конверсии окиси углерода. [c.157]

    Кипящий слой не засоряется пылью, и гидравлическое сопротивление его при эксплуатации остается постоянным, тогда как гидравлическое сопротивление неподвижного слоя даже при условии тонкой очистки газа возрастает в течение года в 1,5—2 раза [21], много быстрей возрастает оно при работе по короткой схеме сухой очистки (без тонкой) [1], и особенно в контактно-башенной системе. Абсолютное значение гидравлического сопротивления контактных аппаратов КС можно задавать при их проектировании, подбирая соответствующий размер зерен катализатора (см. главу VIII). [c.144]

    На Новомосковском химическом комбинате испытывали [123] пенный аппарат для улавливания горячей серной кислотой тумана Н2804, выделяемого барботажпыми концентраторами серной кислоты. Условия образования и улавливания тумана при концентрировании серной кислоты принципиально иные, чем при переработке печного газа. В этом случае улавливание мелкодисперсного сухого тумана является особенно трудной задачей. В двухполочной аппарате степень очистки достигала 75%. Выявлена равноценность работы последующих полок, что определяет возможность достижения достаточно полной очистки газа от тумана в многополочном пенном туманоуловителе. Кроме того, установлена возможность применения одно- и двухполочного пенного аппарата для предварительной очистки газа перед электрофильтрами с целью улучшения их работы снижения концентрации тумана в выхлопном газе электрофильтров. [c.186]

    Четвертую операцию — подогрев газа до температуры зажигания катализатора — производят в теплообменниках за счет тепла реакции окисления ЗОг, выделяющегося при катализе. При этом более или менее достигается необходимое понижение температуры реагентов по мере протекания обратимой экзотермической реакции окисления ЗОг- Однако заметим, что для очистки от контактных ядов (2 операция) газ охлаждали до низкой температуры (30—40 °С), а теперь его вновь нагревают до 400—450 °С для катализа. Мы видим противоречие, которое можно было бы частично устранить введением сухой очистки газа, которую ныне испытывают на заводах [37, 51] или синтезом вы oiнизкотемпературных катализаторов. Тогда тепло реакции окисления ЗОг можно было бы использовать в теплотехниче ких целях. [c.14]

    Схема технологической взаимосвязи объектов газоперерабатывающего завода дана на рис. 2.1. Сырой газ с нефтяных промыслов поступает под небольшим давлением (от 0,15 до 0,5 МПа) на пункт приема и подготовки. Здесь газ очищается от механических примесей (песка, пыли, продуктов коррозии), отделяется от воды и газового конденсата. Затем газ очищается от сернистых соединений и двуокиси углерода. Для очистки применяются сухие и мокрые методы. При сухих методах в качестве поглотителей используются окись цинка, активный уголь и т. д., при мокрых — водные растворы моно- и диэтаноламнна, поташ и др. [c.50]

    В зависимости от характера осаи даемых из газа частиц различают сухие и мокрые электрофильтры. Первые применяют для очистки газов от пыли, а вторые — от мельчайших капель жидкости, взвешенных в газе. Соответственно химическим свойствам осаждаемых [c.64]

    Как следует из таблицы, инерционные пылеуловители и циклоны пригодны для отделения сравнительно грубой пыли, причем наименее эффективны жалюзийные золоуловители, а наиболее — батарейные циклоны. Все эти пылеуловители пригодны для очистки газов только от сухой, нелипкой и неволокнистой пыли. Батарейные циклоны целесообразно применять вместо обычных циклонов лищь при больших количествах очищаемого [c.344]

    Техничеакий водород после очистки газа от СО2 сухой газ - 3,7003 0,900 9007 = 29995 нм /час Углекислота от очистки конвертированного газа сухая без примесей - 0,8194 0,900 9007 = 6642 нм /час сухая с примесью Н2 - 0,8316 0,900 9007 = 6741 нм /час [c.74]

    Для очистки газа от сероводорода существуют сухие и мокрые способы. Сухим способом является очистка с помощью болотной руды, содержащей гидрат окиси железа Ре(ОН)д. При пропускании газа через болотную руду сероводород реагирует с гидратом окиси железа с образованием ГвзЗа- [c.288]

    Наибольшее распространение для очистки газов от пыли в поршневых компрессорах нашли ячейковые фильтры. Ячейка фильтра представляет собой коробку из листовой стали с дном и верхом из металлической сетки, внутри которой находятся различные наполнители. Ячейки фильтра ФяП заполнены листами паропласта толщиной 20—25 мм фильтра ФяУ — упругим стекловолокном, уложенным между двумя металлическими сетками фильтра ФяР — гофрированной металлической сеткой. Пыль удерживается в порах заполнителя и по мере заполнения пылью возрастает гидравлическое сопротивление фильтра. По достижении предельно допустимого значения ячейку заменяют новой. Очистку заполнителя от пыли производят при сухой пыли промывкой в холодной воде, а при липкой — в теплой. [c.262]

    Отличительной особенностью компрессора является закрытый картер 8 с односторонней съемной крышкой, в которой на двух разнесенных роликовых конических подшипниках смонтирован кованый вал с консольным кривошипом 6 и присоединенными к нему шатунами 5, имеющими неразъемные нижние головки с устройствами для разбрызгивания масла. С правой стороны к кривошипу крепится съемный противовес, выполненный совместно с автоматическим регулятором начального давления 7, обеспечивающим разгрузку компрессора в период пуска. На левом конце вала монтируется устройство 1, выполняющее одновременно функции шкива, маховика и вентилятора. Для сокращения затрат мощности и обеспечения заданного расхода воздуха вентилятор имеет профилированные лопатки. Основной поток воздуха направлен на промежуточный холодильник 2, выполненный в виде крльца из оребренных металлических труб, и частично на цилиндры и крышки. Расточки под цилиндры 1-й и П-й ступеней имеют одинаковый диаметр, что позволяет при небольших конечных давлениях повысить производительность компрессора при работе в режиме одноступенчатого сжатия путем замены цилиндра И-й ступени на цилиндр 1-й ступени. Цилиндры выполнены из чугуна с круговым оребрением в зоне камеры сжатия и крепятся к картеру шпильками через нижний фланец. На верхнем фланце цилиндров устанавливается комбинированный клапан 3, который вместе с крышками крепится к цилиндру шпильками. Для обеспечения надежности работы поршневой палец имеет увеличенный диаметр и смазывается маслом, снимаемым с цилиндров маслосъемными кольцами. Очистка газа на входе в компрессор осуществляется с помощью шумопоглощающего комбинированного фильтра, представляющего собой совокупность циклона и сухого фильтрующего элемента, пропитанного силиконом. Компрессоры снабжены системами автоматического управления работой в зависимости от их назначения. [c.316]

    Рукавные фильтры применяют для тонкой очистки газов от сухой или трудноувлажняемой пыли, размеры частиц которой превышают 1 мкм, например для улавливания цемента, сажи, окислов цинка и т. д. Они эффективно работают при очистке газов от волокнистой пыли, иапример асбестовой, но не пригодны для удаления липкой и влажной пыли. [c.244]

    При электрической очистке газов можно получить весьма высокую степень улавливания взвешенных частиц. При этом расход энергии невелик вследствие малого потребления тока и низкого гидравлического сопротивления электрофильтров. Расход энергии на очистку 1000 м 1ч газа составляет в них обычно 0,2—0,3 квт ч. Для очистки сухих газов используют преимущественно пластинчатые электрофильтры, а для отделения трудноулавливаемой пыли и туманов — трубчатые. Электрофильтры являются относительно дорогостоящими и сложными в эксплуатации аппаратами. Они мало пригодны для очистки газов от твердых частиц, имеющих очень малое удельное электрическое сопротивление, и в некоторых других случаях. [c.245]


Смотреть страницы где упоминается термин Очистка газов сухая: [c.63]    [c.305]    [c.38]    [c.96]    [c.97]    [c.134]    [c.149]    [c.249]    [c.30]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.169 ]

Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.250 ]

Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.672 ]

Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.119 , c.145 ]

Производство серной кислоты Издание 2 (1964) -- [ c.151 , c.153 , c.292 ]

Технология серной кислоты (1971) -- [ c.87 , c.88 , c.160 , c.278 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.250 ]




ПОИСК







© 2025 chem21.info Реклама на сайте