Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистый ангидрид каталитическое окисление

    Контактное окисление сернистого ангидрида является типичным примером гетерогенного, окислительного, экзотермического катализа. Это один из наиболее изученных каталитических синтезов. В СССР наиболее основательные работы по изучению процесса окисления сернистого ангидрида, моделированию контактных аппаратов и разработке катализаторов проведены Боресковым, Слинько и их сотрудниками [2—6]. [c.139]


    Так, например, в одном из производств формалина при направлении ветра со . тороны ТЭЦ было отмечено значительное снижение выхода формальдегида при контактно-каталитическом процессе его получения из метанола окислением воздухом. В данном случае фактором, замедляющим реакцию, оказался тоже сернистый ангидрид, содержащийся в дымовых газах ТЭЦ, который, попадая с атмосферным воздухом, подаваемым воздуходувками в систему контактирования, отравлял катализатор. [c.168]

    Наиболее характерным примером полочного контактного аппарата с промежуточным теплообменом является аппарат для каталитического окисления сернистого газа в серный ангидрид, изобра- [c.207]

    Следует отметить, что в процессе сжигания топлива наряду с диоксидом образуется триоксид серы (1-5%) путем гомогенного окисления диоксида серы молекулярным или атомарным кислородом, а также путем гетерогенного каталитического окисления сернистого ангидрида. [c.204]

    Жуков С. A., Барелко В. В. Нестационарные эффекты в реакции окисления сернистого ангидрида на платине//Материалы Второй Всесоюзной конференции по кинетике каталитических реакций. Кинетика-2 . Ч. 1.— Новосибирск Ин-т катализа СО АН СССР.— 1975,— С. 29—32. [c.27]

    Большая часть промышленных процессов, проходящих в фильтрующем слое, тормозится внутренней диффузией. В частности, такими являются крупномасштабные каталитические процессы конверсии метана с водяным паром, конверсии окиси углерода, синтеза аммиака, окисления сернистого ангидрида, нафталина и т. д, [c.32]

    Механизм многих каталитических реакций достаточно подробно изучен. К таким реакциям, в частности, относятся окисление сернистого ангидрида, аммиака, метанола, метану, нафталина, синтез аммиака, высших спиртов, конверсия окиси углерода, [c.33]

    Однако ряд преимуществ проточного метода (простота конструктивного оформления, непрерывность работы, возможность проверки катализатора в условиях, близких к производственным) обеспечили ему широкое применение при изучении каталитических реакций окисления окиси углерода [21], сернистого ангидрида [22], аммиака [23], спиртов [24] и многих других. На рис. 119 дана общая схема проточной установки для определения активности катализатора в процессе окисления сернистого ангидрида [22]. [c.284]

    Для синтеза аммиака [349] применялась окись, полученная обжигом железного колчедана в токе кислорода после удаления образующихся двуокиси-углерода и сернистого ангидрида и смешения с железом или другими металлами группы железа. Сернокислую соль закиси железа обрабатывают аммиаком, смешивают с хромовой кислотой, и осадок высушивают и прессуют. Такой катализатор применяется при окислении окиси углерода, а также для получения метанола и высших спиртов [ПО]. Сплав, содержащий 90% железа и 10% меди, после поверхностного окисления становится хорошим катализатором для каталитического окисления [37]. [c.284]


    Монография посвящена одной из самых актуальных проблем современной химической технологии — расчету каталитических устройств на основе количественного описания физико-химических явлений в реакторах, В книге подробно рассмотрены теория и методы расчета химических реакторов для контактных процессов, вопросы использования математического моделирования и методов теории подобия при оптимальном проектировании и проектировании конкретных аппаратов для процессов синтеза аммиака, окисления сернистого ангидрида в серный ангидрид, каталитического крекинга нефтяных фракций и др. [c.495]

    Газовые реакции на твердом катализаторе распространены в химической промышленности. В частности, производство азотных удобрений было бы невозможным без каталитических реакций конверсии метана и моноксида углерода, синтеза аммиака и окисления его до моноксида азота. Серную кислоту, необходимую для производства фосфорных удобрений, в настоящее время получают почти исключительно контактным способом, основанным на каталитическом окислении сернистого ангидрида в серный. Примеры таких процессов в нефтехимических и органических производствах — каталитический крекинг и риформинг нефтепродуктов, а также синтез метанола и других спиртов и углеводородов. Реакторы для таких процессов обычно называют контактными аппаратами или колоннами синтеза. [c.285]

    Каталитическое окисление сернистого газа в Серный ангидрид [c.455]

    Каталитическое окисление сероводорода сернистым ангидридом в серу в жидкой фазе протекает по реакции [c.148]

    Далее сернистый ангидрид подвергается каталитическому окислению на катализаторе — пятиокиси ванадия (УдО ), в ре- [c.297]

    Каталитическое окисление особенно удобно для удаления горючих примесей пз газовых потоков, содержащих эти примеси в концентрациях ниже пределов горючести поэтому этот процесс находит широкое применение для борьбы с загрязнением атмосферы и уничтожения нежелательных запахов [40, 41]. Процессы каталитического окисления и восстановления особенно целесообразны в тех случаях, когда подлежащие удалению примеси образуют безвредные продукты реакции, как, например, воду, азот, двуокись углерода. Однако они весьма полезны и для превращения вредных и токсичных примесей в мепее вредные соединения, например, для окисления сероводорода и органических сернистых соединений в сернистый ангидрид. [c.340]

    Окисление -аскорбиновой кислоты помимо меди катализируют ионы магния [40], серебра. Следует отметить, что кальций, марганец, железо, никель и кобальт почти не обладают каталитическими свойствами в реакциях окисления аскорбиновой кислоты кислородом воздуха [26], а в безводном спиртовом растворе или других певодных растворах йод и другие галогены не реагируют с -аскорбиновой кислотой. Влияние pH на кинетику окисления -аскорбиновой кислоты подвергалось подробному исследованию [41 ]. В отсутствие катализаторов окисление кислородом воздуха не идет и растворы -аскорбиновой кислоты обладают стойкостью к умеренному нагреванию. Двуокись углерода и сернистый ангидрид предохраняют -аскорбиновую кислоту от окисления они применяются для ее стабилизации. [c.23]

    В опытно-промышленном реакторе диаметром 1000 мм для каталитического окисления сернистого ангидрида основная конверсия ЗОз происходила на протяжении первых 75—90 мм от газораспределительной решетки [371], незначительно изменяясь по высоте остальной части псевдоожиженного слоя (рис. Х1П-14). [c.597]

    В основе наших работ лежат следующие представления о механизме каталитического окисления газов на твердых катализаторах, которые, применительно к изучаемой нами реакции окисления сернистого ангидрида могут быть сформулированы следующим образом. [c.414]

    Каталитическая активность тонких слоев платины при окислении сернистого ангидрида до серного ангидрида при 450° изучалась Данковым, Иоффе, Кочетковым и Перевезенцевым [99]. Прочные слои получались испарением и конденсацией пятиокиси платины или ванадия на стекле или катодной дисперсией на железо, но по сравнению с платинированным асбестом обладали весьма малой активностью. Снижение каталитической активности тонких слоев платины на стекле или железе приписывалось рекристаллизации в условиях данного опыта. Однако катализаторы, приготовленные путем конденсации паров платины на асбесте, под вакуумом обладают такой же высокой активностью, как и обыкновенная платина на асбесте. [c.259]

    Зигерт [385] утверждает, что пятиокись ванадия, отравленная мышьяковистым ангидридом (в каталитическом окислении воздухом сернистого ангидрида до серного ангидрида), можно регенерировать с улучшением активности, применяя большие скорости потока (до 60 л/мин), а также повышая температуру. Сильное увеличение скорости окисления с повышением температуры,, наблюдаемое при высоких температурах, считается подтверждением ослабления отравления. [c.312]


    Каталитическое окисление сернистого газа я серный ангидрид [c.455]

    Каталитическое окисление сероводорода представляет интерес, прежде всего, как эффективный способ очистки от него выбросных промышленных газов. Кроме того, исследование этого процесса имеет значение для разработки теории избирательного действия катализаторов, поскольку при окислении сероводорода возможно образование трех сер усо держащих продуктов серы, сернистого газа, серного ангидрида. [c.268]

    Каталитическим окислением сернистого газа в лаборатории можно получить серный ангидрид. Окисление можно провести в приборе, в котором, как и в промышленном контактном аппарате, сернистый газ и кислород проходят через слой катализатора. Катализатором служит окись хрома или пятиокись ванадия. [c.65]

    Следует отметить, что количество воздуха, требуемое в соответствии с этим уравнением, достаточно для превращения в сернистый ан гидрид лишь одной трети присутствующего сероводорода. Именно поэтому и применяется термин частичное окисление , так как практически в газовом потоке, выходящем из печи, наряду с парами серы содержатся также непревращенный сероводород и сернистый ангидрид, которые затем при взаимодействии в каталитических реакторах образуют серу. [c.368]

    Итак, получение серной кислоты контактным способом сводится к следующим основным операциям 1) получению сернистого ангидрида 2) каталитическому окислению сернистого ангидрида в серный 3) растворению серного ангидрида в серной кислоте с получением олеума и 4) разбавлению олеума водой с получением серной кислоты желаемой концентрации (иногда олеум разбавляют не водой, а более слабой серной кислотой с тем, чтобы повысить концентрацию последней). [c.217]

    Предложено много способов очистки отходящих газов от сернистого ангидрида ЗОг, в том числе кислотно-каталитический способ. В присутствии катализатора пиролюзита (руда, из которой получают марганец) происходит окисление сернистого ангидрида по следующей реакции [c.89]

    Другую опасность представляет низкотемпературная коррозия наружной поверхности печных змеевиков и других металлических поверхностей газового тракта нагревательных установок. Это разрушение связано чаще всего с конденсацией серной кислоты из дымовых газов на стенках, когда их температура нил е точки росы. Образование серной кислоты связывают с окислением сернистого ангидрида при каталитическом действии окиси железа и температурах от 480 до 650°С при обычном содержании серы в топливе такое превращение не превышает 20%. [c.151]

    Оксид серы (VI) 80з (серный ангидрид) Каталитическое окисление сернистого газа 280 + О2 280з Прокаливание сульфата железа (Ш) Ке2(804)з ГегОз + З8О3 [c.345]

    Стремление к уменьшению габаритов привело к разработке малогабаритных химических реакторов (контаетных аппаратов) для каталитического окисления сернистого ангидрида в серный. Принципиальной особенностью новых малогабаритных контактных аппаратов является совмещение процессов каталитического окисления и теплообмена. При этом обеспечивается возможность глубокого конвертирования ЗОг в ЗОз и уменьшение габаритов контактных аппаратов примерно в 20 раз. [c.223]

    Каталитическое окисление сернистого ангидрида в серный — основной процесс в производстве серной кислоты. В контактном способе производства серной кислоты [1] сернистый газ обычно получают обжигом сульфидных руд или сжиганием серы. Затем газ тщательно очищают от пыли, тумана серной кислоты и контактных ядов, сушат и подают компрессорами в контактное отделение. В контактном отделении газ подогревается в теплообменниках до температуры зажигания катализатора и проходит в контактных аппаратах через слои катализатора. На катализаторе идет окисление 802 кислородом, содержащимся в исходном газе. Далее газ, содержащий 80з, охлаждается в теплообменниках сначала исходным газом, затем воздухом. Серный ангидрид поглощается серной кислотой с образованием олеума или моногидрата Н2804. [c.139]

    Одновременно со снижением энергии активации во многих случаях происходит уменьшение порядка реакции. Так, гомогенное некаталитическое окисление сернистого ангидрида происходит по реакции третьего порядка (п = 3) 2SO2-Ь О2 = 250з. При обычных производственных условиях каталитического окисления на малоактивном окисно-железном катализаторе ( =120 — 160 кДж/моль SO2) п — 2,5 на более активном ванадиевом катализаторе п= 1,8, а на самом активном платиновом катализаторе порядок реакции снижается до п = 1 [13]. [c.22]

    Разработаны также способы каталитического окисления сернистых соединений газа до сернистого ангидрида, например процесс Катасульф (железосолодовый метод). [c.73]

    Коррозия паверхносгей нагрева при сжигании сернистых топлив отмечалась давно, однако долгое время не находила себе объяснения. Сернистый ангидрид (ЗОа), в который сгорает сера топлива, как известно, при обычных условиях не конденсируется. Серный ангидрид (80з), могущий конденсироваться при атмосферном дав-лен11н и сравнительно высоких температурах, непосредственно нз серы не образуется, а является продуктом последующего каталитического окисления ЗОг. Отсутствие видимых возможностей такого окисления в условиях котельного агрегата мешало правильному пониманию явления. Однако произведенные исследования установили, что в дымовых газах при сжигании сернистых топлив содержится некоторое количество серного ангидрида (ЗОз). Анализы наружных отложений показали наличие в них сульфатов. Все это вместе взятое дало повод к пересмотру установившихся воззрений по вопросу осаждения росы. [c.101]

    Этот метод получения фталевой кислоты имеет в настоящее время лишь историческое значение, будучи вполне вытесненным способом каталитического окисления нафталина воздухом (см. главу XVI). Заслуживает быть отмеченным факт, что практика окисления нафталина серной кислотой, потребляя огромное количество серной кислоты (9 мол. на 1 мол. нафталина), освобождала соответственные массы сернистого ангидрида. Необходимость их утилизации вызвала быстрое освоение контактного производства серной кислоты. Таким образом развитие органическо-химического производства (индиго через фталевый ангидрид) отразилось на переходе основного из неорганических производств на высшую ступень. Примеры такого взаимодействия двух отраслей производств в их росте и развитии не редки в истории химической техники. [c.374]

    В состав технологической схемы обессеривания включаются каталитическое сжигание всех горючих компонентов газа на катализаторе и окисление сернистого ангидрида в серный (содержание пыли в газе не выше 100 мл/м ). Фирма "Коустл стейтс гзс" (Хьюстон, США) разработала процесс, который при переработке газов позволяет получить тиосульфат аммония - жидкое удобрение. В последнее время были предложены процессы сухой очистки с.извлечением ангидрида в распылительных сушилках (фирма "Ниро атомайзер", Дания) [38]. [c.30]

    Несмотря на очевидную значимость вопросов теории управления химическими процессами, они до настоящего времени изучались немногими, главным образом отечественными исследователями (Г. К. Бо-ресковым, А. И, Плановским, С. И. Обрядчиковым, М. Ф. Нагиевым, Б. К. Америком, В. А. Ройтером, В. Л, Волковым, В. А. Каржа-виным, А. П. Зиновьевой и др.) и не получили еще достаточного освещения в научной печати. Исключение составляют некоторые частные решения для процессов окисления сернистого ангидрида, синтеза аммиака, непрерывного синтеза хлорбензола, синтеза бензосульфокислоты, термического крекинга нефтепродуктов, гидрирования олефинов, деструктивной гидрогенизации в паровой фазе, каталитического риформинга бензинов и синтеза углеводородов из окиси углерода и водорода [1, 2, 3, 4, 4а, 5, б, 7, 8, 8а, 9, 10, И, 12 и 13]. [c.3]

    Каталитические реакции, применяемые в большом масштабе в качестве промышленных процессов, являются в большинстве случаев гетерогенными. Хотя каталитические реакции этого типа уже рассматривались в предыдущих главах, тем не менее здесь будут изложены некоторые специфические случаи гетерогенных каталитических реакций, чтобы показать различия между гетерогенной и гомогенной системами. Для объясне-нения ускоряющего действия катализаторов в гетерогенных системах были предложены различные механизмы, именно 1) катализатор периодически окисляется и восстанавливается [514] 2) электроны, излучаемые из катализатора, ионизируют газы (реагируюыще компоненты), делая их способными реагировать [264], 3) реагирующие компоненты адсорбируются на катализаторе, причем более быстрое превращение происходит благодаря увеличению концентрации на поверхности [154, 177, 178, 470] или созданию условий повышения скорости реакции, и 4) изменяется молекулярное состояние реагирующих компонентов (образование атомов) [55, 514]. Наиболее вероятной причиной ускорения реакции считалась адсорбция газов на катализаторе. В гетерогенном газовом катализе, например, при окислении двуокиси серы в серную кислоту с применением различных катализаторов — платины или ванадиевой и мышьяковой кислот, экспериментально измеряемая скорость реакции — это скорость, с которой сернистый ангидрид диффундирует через слой адсорбированной трехокиси серы, в то время как газы, достигая поверхности катализатора, реагируют почти мгновенно. В противоположность этой группе гетерогенных каталитических реакций имеется другая группа, в которой реагирующие вещества образуют с очень большой скоростью адсорбционный слой на катализаторе, в котором происходит химическая реакция с небольшой скоростью. [c.176]

    При каталитическом получении серной кислоты поведение ванадиевых катализаторов изменяется в зависимости от условий приготовления катализаторов, а также от применяемого соединения ванадия [2]. Сравнивая каталитическую активность различных метаванадатов, как-то натрия, калия, теллура и серебра, при окислении сернистого ангидрида, Каннори и де Пава [79] доказали, что наибольшую каталитическую активность проявляли соли натрия и серебра, а наименьшую—теллура соли калия по активности занимают промежуточное положение. [c.292]

    В главе четвертой Окисление аммиака, метано-аммиачных смесей, окиси углерода и сернистого газа рассматриваются окисление аммиака на платиновой сетке и на окисных катализаторах, синтез синильной кислоты и нитрилов, каталитическое окисление окиси углерода, окисление сернистого газа в серный ангидрид в производстве серной кислоты. Дается обзор теории и практики этих процессов, которые имеют первостепенное промышленное значение. Результаты исследований приведены в сжатой форме. Из советских работ отражены главным образом работы Г. К. Борескова и С. 3. Ро-гинского и их сотрудников. [c.7]

    В настоящем сообщении излагаются данные о влиянии носителя на каталитические свойства промотнрованной пятиокиси ванадия при окислении сернистого ангидрида. Ращение этого вопроса, несомненно, имеет практический интерес. [c.182]


Смотреть страницы где упоминается термин Сернистый ангидрид каталитическое окисление: [c.270]    [c.236]    [c.6]    [c.65]    [c.104]    [c.150]    [c.268]    [c.126]    [c.154]    [c.1096]   
Общая химическая технология (1977) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическое окислени

Сернистый ангидрид

Сернистый газ окисление

Сернистый газ сернистый ангидрид



© 2025 chem21.info Реклама на сайте