Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка природного газа

Рис. 8.21. Схема очистки природного газа с высоким содержанием сероводорода и диоксида углерода Рис. 8.21. <a href="/info/149039">Схема очистки природного</a> газа с <a href="/info/1810102">высоким содержанием</a> сероводорода и диоксида углерода

    Ш к л я р Р. Л., А к с е л ь р о д Ю. В., М и л о г р а д о в а Р. М,, Газ. пром., № 1, 39 (1972). Очистка природного газа от двуокиси углерода и сероводорода водными растворами диэтаноламина. [c.276]

    Для очистки природного газа от СОг и получения водных растворов кислот или щелочей в качестве абсорбента используется вода. Очистка газов от СО2 осуществляется при температуре 287 К и давлении 2,84 МПа в насадочном абсорбере с высотой слоя насадки 17,7 м и скоростью газа в аппарате 0,034 м/с при этом обеспечивается извлечение СОг ДО 94,3 %. Улавливание аммиака водой с получением 10% аммиачной воды позволяет осуществить очистку газов с 40 % до 0,2 % при степени извлечения [c.488]

    АДСОРБЦИОННЫЕ ПРОЦЕССЫ ОЧИСТКИ ПРИРОДНЫХ ГАЗОВ [c.240]

    Поскольку наиболее распространенным компонентом органической серы в природных газах являются меркаптаны, первым для очистки природного газа от органической серы был применен метод щ,елочной очистки, относящийся к хемосорбционным процессам. [c.198]

    ОЧИСТКА ПРИРОДНОГО ГАЗА ОТ МАЛЫХ КОЛИЧЕСТВ СЕРОВОДОРОДА И СЕРООРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.196]

Таблица 8.11. Сравнение затрат на абсорбционную и мембранную очистку природного газа [44] Таблица 8.11. Сравнение затрат на абсорбционную и <a href="/info/750548">мембранную очистку</a> природного газа [44]
    Очистка природных газов от сероводорода и двуокиси углерода [c.161]

    Существуют разнообразные модификации этого процесса, однако достаточно технологичного для условий очистки природного газа пока нет. [c.201]

    Сернистые компоненты природного газа, и в первую очередь НгЗ, служат прекрасным сырьем для производства серы. Из сероводорода природного газа получают наиболее чистую и дешевую серу, потребность в которой постоянно растет. По количеству расходуемой серы и разнообразию сфер ее применения, она наряду с солью, известью, углем и нефтью относится к основным сырьевым материалам для химической промышленности. В 70-х годах 85% добываемой в мире серы перерабатывалось в серную кислоту, 60% серной кислоты шло на производство удобрений. Поэтому современные процессы очистки природного газа связаны с производством серы и очищенного воздуха . [c.169]

    МЭА-процесс до конца 50-х годов был практически единственным способом очистки природного газа от сероводорода и диоксида углерода. [c.171]

    Опыт работы установки показал возможность эффективной очистки природного газа от СО2 в одну ступень, причем очищенный газ вполне соответствовал предъявляемым к нему жестким требованиям низкими оказались и гидравлические потери. [c.294]


    Глав 12. Очистка природного газа от малых количеств сероводорода [c.247]

    Разработаны две модификации технологии, основанные на реакции прямого окисления сероводорода для очистки высококонцентрированных по сероводороду выбросов (реакторы с кипящим слоем катализатора) и для очистки низкоконцентрированных газовых выбросов (реакторы с блочным катализатором сотовой структуры). Установки с кипящим слоем катализатора испытаны на различных объектах в пилотном масштабе для очистки природного газа Астраханского газоконденсатного месторождения и очистки кислого газа на Уфимском НПЗ. Технологическая схема установки приведена на рис. 4.19. Основные результаты приведенных испытаний представлены в табл. [c.121]

    ДЭА-процесс широко используется для очистки природных газов, содержащих OS и Ss, поскольку в отличие от моноэтаноламииа диэтаноламин не образует с ними нерегенери-руемых соединений. Продукты реакции ДЭА с OS и S2 при повышенных температурах гидролизуются на H2S и СО2. Гидролиз осуществляется обычно при регенерации раствора, а иногда зону гидролиза создают уже в абсорбере (см. рис. 53, зона А). Зона гидролиза организуется в верхней части абсорбера из пяти—восьми реальных тарелок, куда подается регенерированный ДЭА-раствор в количестве 10—15% от общего объема с температурой 70—90 °С. Чтобы охлажденный раствор, подаваемый на верхнюю тарелку абсорбера, пе снижал температуру в зоне гидролиза, он обходит ее по обводной линии. [c.174]

    При практически полной очистке природного газа от Н З (не более 20 мг/м ), Oj (не более 0,02 % мол.) и OS (следы), степень извлечения тиолов зависела от концентрации абсорбента (рис. 3.1), а также от удельного орошения и температуры. Оказалось, что она растет с увеличением L/G и снижается с повышением температуры абсорбции. Результаты анализа газов на содержание тиолов приведены в табл. 3.5. [c.60]

    Процесс очистки природного газа от кислых компонентов с применением водного раствора алканоламина, содержащего полисульфид амина, разработан во ВНИПИгазе [7]. [c.73]

    Авторы [13, 61] провели технико-экономический анализ работы мембранной установки (рис. 8.13). Расчет был сделан для двух основных вариантов работы мембранной системы очистке природного газа в двухступенчатой установке работы в режиме УНП при высоких концентрациях СО2 в исходном газе. Для обоих вариант01в приняты нагрузка по исходному газу 23 750 м /ч, давление —6,5 МПа, концентрация СО2 —от 10 до 90% (об.). [c.291]

    Агеев Г.А. Борьба с пенообразованием в процессе аминовой очистки природного газа // Сер. Подготовка и переработка газа и газового конденсата Обз. инф. ВНИИЭГазпром. 1979. Вып. 3. С. 1-33. [c.95]

    Черномырдин B. . Исследование и разработка технологии процесса очистки природного газа от органических соединений серы Автореф. канд. дис. М. ВНИИГАЗ, 1981. 24 с. [c.95]

    Колчедан всех видов, природная сера и сера, получаемая из технологических газов нефтепереработки, руд цветных металлов и природного газа, транспортабельны, тогда как отходящие сернистые газы цветной металлургии и сероводород, извлекаемый при очистке природного газа, нефтепродуктов и коксового газа, нетранспортабельны и должны перерабатываться там, где они образуются. Целесообразность первоочередного использования серосодержащих газов определяет ся экономичностью и необходимостью охраны природы от воздействия агрессивных сернистых соединений. [c.23]

    ОЧИСТКА ПРИРОДНЫХ ГАЗОВ И ПОЛУЧЕНИЕ ГАЗОВОЙ СЕРЫ [c.267]

    Очистка природных газов от сернистых соединений и углекислоты — процесс, который непрерывно совершенствуется. Первоначально целью очистки было удаление из газа нежелательных примесей перед подачей его потребителям. Выбор способа очистки определялся лишь его экономичностью. Однако необходимость в очистке всегда увеличивала стоимость газа. В середине 60-х годов открытие крупных газовых месторождений, содержащих HjS и Oj, и почти одновременно с этим возросший во всем мире спрос на серу в корне изменили экономические показатели процессов очистки газа. К прибыли, получаемой от реализации очищенного газа, прибавилась стоимость извлекаемой из него серы. Это стимулировало широкое применение старых способов сероочистки, модернизацию существующих и развитие новых процессов. Поэтому специалисты, занимающиеся вопросами сероочистки, имеют возможность широкого выбора процессов. [c.267]

    Для одновременной очистки газа от сероводорода, двуокиси углерода и воды применяют смесь этаиоламина с этиленгликолем. Такая комбинированная очистка приводит к обезвоживанию сырья и снижению расхода водяного пара, используемого для регенерации растворителей. На рис. 72 приведена технологическая схема очистки природного газа смесью этаноламина с этиленгликолем. [c.161]

    Процесс Эстасольван . В качестве растворителя используется трибутилфосфат (ТБФ). Способ состоит в одновременной очистке природного газа от H2S и извлечении жидких углеводородов. [c.182]

    Для предотвращения этого явления в промышленных установках производится специальная очистка природного газа от механических примесей, в первую очередь от окалины. Аппаратура для очищенного газа выполняется из окалиностойкой стали (нержавеющая или аллютированная сталь). [c.55]


    Очистка природных газов от механических примесей осуществляется главным образом с помощью механических устройстп. Различают методы сухой и мокрой газоочистки. Для сухой очистки [c.154]

    Промышленных методов очистки газов от H2S и Oj весьма много. Из них наибольший интерес представляет очистка этанол-аминами, позволяюп ая при некоторых условиях совместить удаление H2S, СО2 и Н2О. Кроме этаноламиновой очистки для этой цели применяется водная промывка и очистка водными растворами карбонатов щелочных металлов. Этаноламиновая очистка углеводородных газов от HjS и СО 2 была разработана еще в 1930 г. Сейчас этот метод широко применяется в разных вариантах при подготовке сырья для нефтехимического синтеза. При очистке природных газов применяется водный раствор моноэтаноламина концентрацией 15— 20%. Помимо низкой стоимости моноэтаполамин характеризуется высокой реакционной способностью, стабильностью и легкостью регенерации. Температура кипения моноэтаноламина 170° С, он неограниченно растворяется в воде. [c.161]

    Модули половолоконного типа, несмотря на высокую плотность упаковки, имеют ряд недостатков, главным из которых является высокое (0,7—1,0 МПа) гидравлическое сопротивление. Поэтому аппараты этого типа нашли промышленное при-.менение в процессах, протекающих при относительно высоких давлениях (извлечение водорода из продувочных газов синтеза аммиака, очистка природного газа). Существенным недостатком таких аппаратов является также неразъемность конструкции, поэтому их осмотр и ремонт весьма затруднительны или невозможны вообще. [c.193]

    Расчеты показали, что капитальные вложения в установку двухступенчатой мембранной очистки природного газа, содержащего 207о(об.) СОг, в два раза меньще, чем на абсорбционную с использованием хемосорбента. Более того, единственным видом эксплуатационных затрат в мембранном процессе являются расходы на энергию (топливо), используемую для регенерации гликоля (после осушки газа) и для работы компрессора [c.292]

    Фирма Сепарекс разработала процесс очистки природного газа от кислых компонентов на аппаратах рулонного типа (описание конструкции — см. разд. 8.1) с использованием асимметричной мембраны из ацетата целлюлозы [41—43]. [c.292]

    Параметры работы другой полупромышленной установки Сепарекс , состоящей из 24 таких же модулей диаметром 0,051 м, по очистке природного газа высокого (5,5 МПа) давления представлены в табл. 8.9. Ис.ходный газ перед подачей на разделение подвергался осушке. [c.294]

    На основе результатов полупромышленных испытаний разработан процесс подготовки природного газа морских месторождений, при этом вместо традиционной гликолевой осушки используют мембранную (нз ацетатцеллюлозы) установку (рнс. 8.17), гораздо меньших маосы и габаритов. Это позволяет сократить размеры морских газодобывающих платформ, уменьшить число их онор (например с 8 до 6), а значит и стоимость. Подсчитано, что экономия от снижения стоимости равна затратам на приобретение мембранной установки. Кроме того, можно проводить на одной я той же установке одновременно осушку и очистку природного газа непооредственно на месторождениях, удаленных от потребителей. А это, в свою очередь, позволит снизить расходы на транспортирование газа и на защиту трубопроводов от коррозии. [c.294]

    Обычно сч итают, что применительно к очистке природного газа мембранные методы эффективны только для удаления основной массы примесей, а для более тонкой доочистки необходимо применять либо методы с использованием химичесюих абсорбентов, либо адсорбционные [13, 41—43, 61, 63]. Авторы [44] оравнили затраты на двухступенчатый мембранный процесс с абсорбционным диэтаноламиновым (ДЭА) при невыгодных для мембранного способа условиях. Оказалось, что даже при такой низкой концентрации СО2 в газе, как 4% (об.), затраты на эти процессы сравнимы. В табл. 8.11 приведено сравнение затрат (в ценах 1983 г.) на очистку 3350 м ч природного газа, находящегося под давлением 7,7 МПа и содержащего 8% (об.) диоксида углерода. [c.295]

    Новая технология селективной очистки природного газа от внедрена на ОГПЗ. [c.55]

    Перспективной представляется технологическая схема очистки природного газа с использованием вихревой трубы, в которой реализован вихревой эффект Ранка — Хилша (рис. П-5). Природный газ под давлением 0,8—1,2 МПа и выше охлаждается в межтрубном пространстве теплообменника отходящим потоком очищенного газа. Здесь же конденсируются тяжелые [c.46]

    В вихревой трубе происходит ие только конденсация, но и абсорбция углеводородов конденсатом, поэтому результаты очистки значительно более высокие, чем при простой конденсации. С15едняя концентрация углеводородов фракции С5 в очищенном газе в 2,5—3 раза ниже, чем в исходном, а содержание Сб—Сй снижается от 0,2—0,6 до 0,02—0,03% при температуре минус 50 °С. Постепенно блок очистки газа может забиться гидратами и его требуется подогревать до 50—100 °С, либо вводить небольшое количество метанола. Основными преимуществами указанного способа очистки газа являются простота аппаратурного оформления, а также небольшие капитальные и эксплуатационные затраты. Кроме того, при конденсации углеводородов происходит очистка природного газа также и от сернистых соединений, хорошо растворимых в газовом конденсате, в частности от меркаптана. Способ очистки может быть применен лишь в тех случаях, когда имеется возможность снижения давления очищаемого газа в 2—3 раза. [c.47]

    С вводом в эксплуатацию Оренбургского НГКМ, а также ряда месторождений в Астраханской области, Казахстане и Средней Азии, перед газовой и нефтедобывающей промышленностью встала проблема эффективной очистки природного газа от сероводорода и сероорганических соединений. Применение традиционных процессов газоочистки с использованием аминовых растворов сопряжено с большими удельными капитальными и эксплуатационными затратами. Это выдвинуло на первый план проблему разработки и промышленного освоения новых экономичных и безотходных технологий, обеспечивающих полное и квалифицированное использование всех компонентов перерабатываемого сырья с учетом возрастающих требований экологической безопасности и энергоресурсосбережения. [c.5]

    В результате промышленных испытаний получени.данны л. влиянии удельного орошения, концентрации АДДЭА в растворе и степени насыщения амина на селективность процесса очистки газа. Экспериментальные зависимости использованы при разработке технологического регламента на эксплуатацию установок очистки природного газа с применением растворов АЛДЭА для различных технологических ситуаций, включая изменения производительности, состава перерабатываемого сырья, его физических параметров и др. [c.55]

    Анализ усредненных показателей работы установки показал, что в зависимости от исходного содержания кислых компонентов в газовой смеси, соотношения жидкость/газ, температурного режима абсорбции и десорбции, содержания полисульфида амина в рабочем растворе, степень очистки по меркаптановой сере составляет 44...87%, по сероводородной сере - отсутствие. Эти испытания показали возможность комплексной очистки природного газа от сероводорода, диоксида углерода, а также от меркаптанов с применением полисульфида амина в составе абсорбента на основе алканоламинов. [c.75]

    Настека В.И. Результаты исследования селективной очистки природного газа Карачаганакского ТИМ ча опытной установке ОГПЗ. //Инф. сб. "Передовой производственный и научно-техничес-кий опыт, рекомендуемые для внедрения в газовой промышленности", 1989, № 12, с. 5-8. [c.94]

    После отделения органического слоя, состоящего из тиоэфиров, сточная вода представляет собой раствор хлорида натрия, который может быть направлен на процесс электролиза для получения раствора NaOH, используемого в процессе очистки природного газа от сернистых соединений. [c.158]

    Для очистки природных газов от пыли и механических примесей применяют коалесцентные сепараторы, пылеуловители, сепараторы газ—жидкость , центробежные скрубберы, сепараторы электростатического осаждения и масляные скрубберы. Все они фактически имеют двойное назначение удаление основной массы жидкости и пыли из газа и одновременная очистка газа от мельчайших частиц. [c.94]


Библиография для Очистка природного газа: [c.207]   
Смотреть страницы где упоминается термин Очистка природного газа: [c.179]    [c.293]    [c.47]    [c.69]    [c.90]    [c.98]    [c.680]   
Очистка технологических газов (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Природные газы



© 2025 chem21.info Реклама на сайте