Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика массопередачи с химической реакцией в жидкой фазе

    Во многих промышленных процессах очистки газовых потоков абсорбционным методом поглощение целевого компонента жидким поглотителем сопровождается химическим взаимодействием молекул абсорбтива с молекулами активного компонента абсорбента и переходом его в связанное состояние. При этом концентрация компонента в жидкости уменьшается, что приводит к увеличению градиента концентраций и ускорению поглощения абсорбтива в жидкой фазе по сравнению с физической абсорбцией. Таким образом, в этом случае кинетика абсорбции определяется не только скоростью массообмена, но и кинетическими закономерностями реакции. В зависимости от того, какая скорость определяет общую скорость переноса массы целевого компонента, различают кинетическую и диффузионную области протекания хемосорбции. В кинетической области лимитирующей является скорость химического взаимодействия, в диффузионной области — скорость диффузии целевого компонента в зоне реакции Если скорости реакции и массопередачи соизмеримы по величине, то процесс протекает в смешанной, диффузионно-кинетической области. [c.244]


    При изучении хемосорбционных процессов следует совместно рассматривать закономерности массопередачи и химической кинетики, так как скорости диффузионных этапов и химических стадий могут быть сопоставимы. Поэтому количественная характеристика хемосорбционных процессов связана со многими дополнительными факторами. Реакция в жидкой фазе понижает концентрацию поглощаемого газового компонента в жидкости, что увеличивает движущую силу процесса и ускоряет его по сравнению с физической абсорбцией. Увеличение общей скорости процесса тем больше, чем выше скорость реакции в жидкой фазе. В соответствии с этими особенностями при количественном выражении хемосорбционных процессов обычно вводятся поправки к величине движущей силы или коэффициента массопередачи, которые характеризуют равновесие и скорость реакции в жидкой фазе. При значительных скоростях реакции сопротивление жидкой фазы становится пренебрежимо малым. Наоборот, при медленной реакции ускорение процесса также мало и им можно пренебречь, рассматривая процесс как физическую абсорбцию. Движущую силу абсорбционных процессов наиболее точно можно выразить следующим образом [см. формулу (VI.14)]  [c.161]

    К существенным теоретическим выводам этой главы относятся закономерности кинетики протекания химической реакции первого порядка, когда растворенные молекулы диффундируют от межфазной границы в жидкую фазу, и реакции второго порядка при взаимодействии растворенных молекул газа с нелетучим реагентом, который находится в жидкой фазе и диффундирует к границе раздела, где встречается с поступающими молекулами газа. Показано, что в этих двух случаях влияние реакции может быть совершенно различным и что скорость массопередачи может быть не пропорциональна движущей силе, особенно при протекании бимолекулярной реакции. Рассмотрены примеры применения теории, включая определение скоростей абсорбции оксидов азота в воде и в растворах кислот, анализ абсорбции диоксида углерода щелочными буферными системами, а также процесса окисления сульфита железа в водном растворе. [c.332]


    Теоретические основы инженерных методов расчета кинетики массопередачи с химической реакцией в жидкой фазе [c.10]

    Кинетика массопередачи с химической реакцией в жидкой фазе [c.18]

    Отметим, что практически во всех работах анализ кинетики массопередачи с химической реакцией в жидкой фазе выполнен на основе принципа независимой диффузии. По-видимому, это является оправданным [29, 42], поскольку содержание в жидкости ключевого (передаваемого из газовой фазы) компонента мало, и бинарные коэффициенты молекулярной диффузии компонентов в жидкой фазе отличаются незначительно. [c.21]

    Кинетика массопередачи со сложными химическими реакциями в жидкой фазе [c.75]

    На основе этих представлений проведен анализ кинетики массопередачи, сопровождающейся химической реакцией в жидкой фазе. [c.221]

    Проведен анализ более сложных случаев хемосорбции. Рассмотрена кинетика процесса одновременной хемосорбции двух компонентов газа с параллельными необратимыми химическими реакциями в жидкой фазе. Сопоставление приближенных аналитических и численных решений позволило рекомендовать инженерные методы расчета взаимосвязанных коэффициентов ускорения массопередачи двух передаваемых компонентов газовой фазы в зависимости от степени исчерпывания хемосорбента на границе раздела фаз. [c.222]

    Спекание идет при нагревании смесей твердых кристаллических веществ ниже температуры их плавления. Механизм и кинетика процессов спекания очень сложны, так как химическое взаимодействие в смеси твердых веществ, зависящее от ее состава, отличается от химических реакций в жидкой и газовой фазах и имеет ряд особенностей. Взаимодействие, протекающее на поверхности раздела сосуществующих фаз, гетерогенно, зависит от пространственного расположения масс реагирующих компонентов и связано с возникновением новых фаз. Для осуществления химической реакции необходима массопередача — частицы реагентов должны перемещаться в зоне взаимодействия через разделяющие среды (внешняя диффузия) и внутри зерен (внутренняя диффузия). При этом возможны два не исключающих друг друга случая. [c.432]

    Развитие процесса на границе раздела двух фаз, например твердой и жидкой, связано не только с химическим превращением, но и с переносом веществ из глубины фаз к поверхности, а также с удалением конечных продуктов из зоны реакции. Поэтому химическая кинетика гетерогенных реакций тесно связана с законами массопередач, законами диффузии. Так как гетерогенное превращение распадается на последовательные стадии, именно стадию переноса к зоне реакции, стадию собственно химического превращения и стадию удаления продуктов реакции, то суммарная скорость процесса будет определяться самой медленной стадией (при условии, что скорости, соответствующие отдельным стадиям, не очень сильно отличаются друг от друга). [c.392]

    Рассмотрим кинетику массопередачи в процессе многокомпонентной хеморектификации, принимая следующие предположения а) химическая реакция протекает только в жидкой фазе б) кинетика реакций может быть сведена к линейной относительно вектора, составов. Принятые предположения не снижают общности поставленной задачи, так как, во-первых, в большинстве хеморектифи-кационных процессов реакции протекают в жидкой фазе или химическое взаимодействие в паровой фазе настолько мало, что им можно пренебречь без ущерба для точности расчетов, и, во-вторых,, кинетика любых реакций может быть сведена к линейной относительно вектора составов [78]. [c.349]

    В ряде работ исследована теория некоторых специальных случаев одновременной абсорбции двух компонентов газа. Так, рассмотрена проблема [80, 90], связанная с химическим взаимодействием компонентов между собой после перехода их в жидкую фазу. Получены приближенные аналитические и численные решения для абсорбции двух газов, сопровождаемой сложной реакцией, в частности последовательно-параллельной реакцией, включающей две необратимых и одну обратимую реакцию [91]. Предполагается, что по такой схеме может протекать реакция хлоргидрирования этилена. Массопередача со сложной реакцией изучена также в работах [58, 92—94, 96]. Наконец, в работе [95] рассмотрена теория кинетики двухкомпонентной хемосорбции, осложненной обратимыми химическими реакциями, однако анализ ограничен областью протекания мгновенной реакции. [c.85]


Смотреть главы в:

Газожидкостные хемосорбционные процессы Кинетика и моделирование -> Кинетика массопередачи с химической реакцией в жидкой фазе




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Жидкая фаза химическая реакция

Кинетика массопередачи

Кинетика химическая

Кинетика химических реакций

Массопередача

Массопередача массопередачи

Реакция жидкой фазе



© 2024 chem21.info Реклама на сайте