Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутримолекулярные взаимодействия и скорость химических реакций

    Спектры ЯМР и ПМР состоят из ряда пиков поглощения, характерных для разных химических групп в поглощающей молекуле. Форма пика поглощения, обусловленного определенным химическим соединением, зависит от химического взаимодействия с другими веществами, изменяющими среднюю продолжительность жизни исходного вещества. Можно наблюдать и между- и внутримолекулярные процессы. В типичном исследовании сначала получают спектр чистого реагента, за ним следует серия спектров, наблюдаемых при добавлении второго реагента к первому во все увеличивающихся количествах. Если химический обмен происходит между двумя реагентами, то исходный острый пик обычно постепенно расширяется по мере увеличения скорости обмена при повышении концентрации реагентов. Теория таких процессов обменного расширения -была развита недавно рядом авторов [111, 112, 171], и на основании их трактовки можно сопоставить наблюдаемые формы пиков поглощения или ширины пиков с соответствующими величинами, вычисленными при использовании двух параметров. Из наилучших значений параметров можно найти среднюю продолжительность жизни атома в данном химическом состоянии. Для общего случая химической реакции между А и В, подчиняющейся закону второго порядка, i =f [A][B] (А — вещество, спектр которого наблюдается), по определению, [c.94]


    Образование внутримолекулярных водородных связей (ВВС) значительно влияет на физические и химические свойства соединений [1], и поэтому выяснение их природы и характера взаимодействия протонодонорных и акцепторных центров весьма существенно при исследовании пространственной структуры продуктов 1—3], а также механизма и скоростей протекания реакций 1, 4]. Сведений об образовании ВВС для большого числа гидроксил- и аминосодержащих соединений с помощью ИК-спектро копии [1— 3] в литературе нами не обнаружено. [c.108]

    Посмотрим теперь, какую информацию мы хотели бы получить из экспериментального уравнения скорости. Прежде всего подход к уравнению будет различным в зависимости от целей — должен ли быть оптимизирован процесс или выяснен механизм реакции. Если в первом случае требуется просто найти аналитическую зависимость скорости от концентрации, то во втором случае уравнение скорости должно дать представление о реакции на молекулярном уровне. Это подразумевает выяснение отдельных элементарных стадий или элементарных реакций, которые происходят одновременно и последовательно внутри общей реакции. Элементарные реакции бывают реакциями первого порядка, например внутримолекулярные перегруппировки или реакции разложения, а чаще всего реакциями второго порядка, когда молекулярное взаимодействие между двумя частицами прямо приводит к продукту. Большинство химических реакций можно представить как те или иные комбинации элементарных реакций. Обычно различают следующие простые комбинации 1) параллельные реакции (конкурирующие, одновременные) 2) последовательные реакции или последовательность реакций 3) обратимые реакции. [c.12]

    Согласно этой теории на поверхности катализатора происходит адсорбция, т. е. сгущение участвующих в реакции (одного или нескольких) газообразных или растворенных веществ. Сгущенные на поверхности катализатора вещества находятся как бы под большим давлением и в высокой концентрации, что само по себе уже способствует повышению скорости реакции. Но этим не ограничивается действие катализатора. В результате взаимодействия -отдельных атомов, составляющих молекулу реагирующего вещества, с атомами катализатора происходит ослабление внутримолекулярных сил в частицах реагирующих веществ, что приводит к активации их. Иногда при этом адсорбированные молекулы диссоциируют на отдельные атомы, отличающиеся большой химической активностью (водород на платине). [c.110]


    Даже после существенного сокращения числа уравнений задача отыскания механизмов физико-химических процессов в реальных неравновесных системах в настоящее время, как правило, не может быть решена теоретически. Это связано с тем, что априори трудно, а зачастую и невозможно определить скорости тех или иных реакций, которые дают существенный вклад в механизм рассматриваемых процессов. Теоретические основы методов расчета уровневых сечений и коэффициентов скоростей широкого круга процессов столкновений частиц и вероятностей внутримолекулярных переходов в общем виде разработаны [72—78, 81, 125, 131—134]. Однако отсутствие сведений о виде потенциальных кривых и потенциальных поверхностей ряда двухатомных и многоатомных молекул, о потенциалах взаимодействия частиц, особенно возбужденных по внутренним степеням свободы, делает применение их к реальным системам весьма проблематичным. [c.35]

    Однако наиболее полные сведения в этой области могут быть получены из экспериментов по рассеянию молекулярных пучков. В этих экспериментах используется целая группа методов (зачастую сильно отличающихся друг от друга) для исследования взаимодействия атом — атом, атом — молекула, молекула — молекула, атом — ион, ион — молекула, ион — ион и, наконец, атом, ион, молекула— фотон. Информацию, получаемую из рассеяния молекулярных пучков, составляют полные сечения процессов, распределения продуктов по углам разлета, скоростям и внутренним состояниям, а также в ряде случаев — зависимости сечения от взаимной ориентации реагентов. Здесь мы имеем дело по существу с химическим процессом при одном столкновении (single ollision hemistry). Поскольку этот акт не усложнен последующими молекулярными столкновениями, удается получить информацию о движении атомов сталкивающихся молекул, управляемом меж- и внутримолекулярным взаимодействиями. Это новое направление в кинетике химических реакций и определяется как динамика элементарных процессов. [c.51]

    Химические свойства пространственно-затрудненных фенолов, имеющих в пара-положении карбонильную группу, значительно отличаются от свойств 2,4,6-триалкилфенолов. Кроме того, наличие в молекулах этих соединений пространственно-затрудненного фенольного гидроксила оказывает резкое влияние на реакционную способность карбонильной группы. Так, вследствие внутримолекулярного взаимодействия функциональных групп 4-окси-3,5-ди-алкилбензальдегиды и 4-окси-3,5-диалкилфенилалкилкетоны склонны к таутомерным превращениям (см. гл. 7), при которых происходит енолизация карбонильной группы. Поскольку эти процессы обычно протекают в щелочной среде, то, естественно, скорость реакций подобных соединений с нуклеофильными агентами в значительной степени зависит от pH реакционной среды. В кислой среде реакционная способность карбонильной группы в этих соединениях определяется главным образом электрофильностью [c.271]

    Конфигурационные эффекты включают как первичное стерео-химическое влияние тактичности, так и вторичное влияние уже прореагировавших соседних групп на реакционную способность функциональных групп. Условия полимеризации определяют строение, структуру н реакционное поведение полимеров. Чем больше объем имеющихся в полимере групп, тем больше их влияние друг на друга. Влияние заместителей четко прослеживается на значениях констант скоростей полимераналогичных превращений. Внутримолекулярные взаимодействия зависят, в первую очередь, от структуры макромолекулы и ее тактичности [18, 19]. В [20] показано, что стерические эффекты заместителей оказывают большее воздействие на межмолекулярпые реакции. [c.17]

    Сдвиговые деформации могут вызвать временные или постоянные изменения свойств полимеров. Если усилия при сдвиге превосходят силы межмолекулярного и внутримолекулярного взаимодействия, то имеет место разрушение надмолекулярной структуры полимеров. Мы рассматриваем реакции, происходящие под действием механических сил преимущественно в линейных полимерах. Течение сетчатых полимеров может быть достигнуто путем механохимических реакций, но у линейных полимеров предел текучести обычно значительно ниже усилий, необходимых для разрыва связей. К более слабым взаимодействиям в полимерных системах относятся ионные и водородные связи. Физические зацепления, прочность которых зависит от скорости деформации, могут оказаться причиной еще более высокого уровня накопления упругой энергии в деформированной полимерной сетке. Примером этого случая служит обычный поливинилхлорид. И, наконец, если сдвиговые усилия достаточны для накопления упругой энергии, равной прочности основной цепи макромолекул, и в итоге происходит разрушение молекул. Процесс можно представить как последовательное накопление упругой энергии, в результате чего развиваются химические реакции и происходит рассеяние этой энергии. Механохимическое разрушение связей протекает путем гомолити-ческого разрыва молекул с уничтожением образующихся радикалов. В литературе описано несколько типов ионных реакций, происходящих под действием механических сил. [c.16]


    Такое переплетение влияния различных эффектов и факторов на протекание большинства, в том чи"сле простейших по химизму, реакций в полимерах приводит к затруднению их количественного описания. Углубленное количественное описание проведено к настоящему времени на примерах реакций термической деструкции, окисления полимеров, ряда полимераналогичных реакций с учетом эффекта соседних звеньев и формирующейся композиционной неоднородности продуктов (гидролиз, хлорирование и др.), многих межмакромолекулярных реакций и формирования сетчатых структур в полимерах. Чисто химические аспекты изучены значительно больше в реакциях типа полимер — низкомолекулярное вещество по сравнению с реакциями полимер — полимер. При этом следует иметь в виду, что получаемые при количественном описании хи мических реакций полимеров константы их скоростей часто за висят от условий проведения реакций (тип растворителя, темпе ратура и др.), так как эти условия влияют на конформационные надмолекулярные и другие эффекты, которые, как было показано в свою очередь определяют возможность и степень протекания той или иной реакции. Наиболее сложными для количественного описания являются твердое и вязкотекучее состояния полимеров, концентрированные растворы, т. е. состояния, где проявляется межмолекулярное взаимодействие, переходы от полимераналогичных к внутримолекулярным и межмакромолекулярным взаимодействиям, что приводит к получению различных по физическому [c.229]

    Природа реагирующих веществ. Здесь большую роль играют как внутримолекулярные (химические), так и меж-молекулярные (ван-дер-ваальсовы) силы. Вещества с неполярными молекулами, как правило, реагируют между собой наименее быстро. Это является результатом прочности внутримолекулярных связей и сравнительной слабости межмо-лекулярных сил. С другой стороны, полярные вещества в водных растворах чрезвычайно быстро взаимодействуют между собой в виде ионов. При значительных силах взаимодействия между молекулами реагирующих веществ скорость реакции возрастает. Полярность молекул является важным фактором именно в этом отношении. [c.27]


Смотреть страницы где упоминается термин Внутримолекулярные взаимодействия и скорость химических реакций: [c.169]    [c.45]    [c.146]    [c.446]    [c.273]   
Теоретические основы органической химии (1973) -- [ c.45 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Внутримолекулярные реакци

Реакции внутримолекулярные

Скорость взаимодействия

Химические реакции скорость

Химические скорость



© 2025 chem21.info Реклама на сайте