Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика гетерогенных химических реакций в потоке

    Уравнения кинетики гетерогенных химических реакций, протекающих в потоке, были выведены Г. М. Панченковым. Если гетерогенная химическая реакция протекает в -потоке, т. е. если реагирующие вещества движутся в трубке через неподвижно закрепленный твердый катализатор, то, согласно данному выше определению (стр. 316), скорость гетерогенной химической реакции [c.324]


    Формула (3.11) справедлива при любых числах Пекле и произвольной кинетике гетерогенной химической реакции и является следствием баланса интегральных потоков тепловой энергии и энтальпии на поверхности частицы. [c.241]

    Кинетика гетерогенных химических реакций в потоке [c.103]

    Уравнения кинетики гетерогенных химических реакций, протекающих в потоке, выведены впервые Г. М. Панченковым. [c.414]

    При небольших скоростях движение потока паро-газовой смеси строго ламинарное. Характерным для ламинарного потока является то, что перенос вещества паро-газовой смеси к поверхности осаждения происходит посредством молекулярной диффузии и термодиффузии, и скорость переноса реагентов определяется константой скорости диффузии. Наблюдаемая скорость реакции определяется поэтому с одной стороны скоростью переноса реагирующих веществ к поверхности, а с другой стороны кинетикой гетерогенной химической реакции, протекающей на этой поверхности. Учет кинетических факторов имеет особое значение при выращивании структурно совершенных эпитаксиальных пленок, где выход кремния является второстепенным фактором. Следует отметить еще то, что присутствие в паро-газовой смеси хлоридов [c.423]

    КИНЕТИКА ГОМОГЕННЫХ И ГЕТЕРОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ В ПОТОКЕ [c.371]

    XV. Кинетика гомогенных и гетерогенных химических реакций в потоке 375 Вводя принятые обозначения, имеем [c.375]

    XV. Кинетика гомогенных и гетерогенных химических реакций в потоке 389 то уравнение скорости будет иметь следующий общий вид  [c.389]

    ХУ. Кинетика гомогенных и гетерогенных химических реакций в потоке 395 Из кинетической теории газов следует, что [c.395]

    КИНЕТИКА ГОМОГЕННЫХ И ГЕТЕРОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ В ПОТОКЕ, ПОДВЕРГАЮЩЕМСЯ ПОЛНОМУ ПЕРЕМЕШИВАНИЮ [c.413]

    Общее уравнение скорости гетерогенной химической реакции в потоке в режиме идеального перемешивания можно найти методом, аналогичным примененному нами при выводе общего уравнения кинетики гомогенной реакции в потоке в режиме идеального перемешивания. [c.423]

    Диффузионный поток на вращающийся диск. Уравнение конвективной диффузии имеет наиболее простую форму для задачи о массопереносе к поверхности вращающегося с постоянной скоростью круглого диска, когда на его поверхности протекает гетерогенная химическая реакция. Важной особенностью вращающегося диска как поверхности реакции является то, что толщина гидродинамического пограничного слоя при ламинарном течении, а вместе с ней и толщина диффузионного пограничного слоя постоянны по всей поверхности диска, за исключением его краев. Это означает, что условия переноса вещества в любой точке поверхности диска одинаковы. Такие реакционные поверхности называют равнодоступными в диффузионном отношении [4]. Указанные особенности обусловливают использование вращающихся дисков, в частности, для изучения закономерностей химической кинетики [8]. [c.362]


    Поскольку гетерогенный катализатор образует самостоятельную фазу, то обязательной стадией гетерогенно-каталитических реакций является перенос вещества из фаз потока (жидкой или жидкой и газовой) к поверхности катализатора. Таким образом, в жидкостных химических реакциях наряду с процессами переноса между фазами потока, содержащими различные реагенты, возникают процессы переноса к внешней иоверхности катализатора и внутри его пор. Рассмотрим сначала диффузионную кинетику в условиях однофазного жидкостного потока. Воспользуемся для этого подходом, изложенным в монографии [1]. [c.55]

    Важно отметить, что в принципе скорость превращения не идентична скорости химической реакции. Последняя определяется только химической кинетикой системы, т. е. представляет собой скорость превращения, определенную в таких условиях, когда отсутствует влияние эффектов физического транспорта реагентов к реакционным центрам и продуктов реакции от них. Такие эффекты не влияют на химический процесс в случае гомогенных реакций, проводимых в потоке, когда реагенты хорошо перемешиваются, а также гетерогенных реакций, скорость которых мала по сравнению со скоростью потенциального физического транспорта. [c.30]

    Широкое исследование каталитических превращений в потоке потребовало разработки специального раздела химической кинетики гетерогенных реакций в потоке. Следует указать, что эта задача была успешно решена школой советских физико-химиков. [c.82]

    Развитая нами теория термического режима гетерогенных экзотермических реакций была применена нами [1] к важнейшему примеру гетерогенного горения к горению угля. Наблюдавшиеся Гродзовским и Чухановым [12] процессы окисления и горения угля, которые эти исследователи пытались трактовать как две различные химические реакции, удалось истолковать как два различных термических режима протекания одной и той же реакции. Определение условий воспламенения угольных нитей в потоке воздуха, позволило сделать ряд выводов о кинетике реакции углерода с кислородом при высоких температурах [18]. [c.392]

    Рогинским, Яновским и др. [44] разработан комплексный метод /исследования кинетики каталитических реакций, связанный с проведением реакций в хроматографическом режиме. Сущность этого варианта заключается в "том., что в трубке, заполненной катализатором, в потоке газа-носителя одновременно происходит и химическая реакция, и разделение компонентов. Для описания этого процесса в правую часть дифференциального уравнения (1,65) в простейшем случае следует добавить слагаемое х рс (где kp — константа скорости реакции), если реакция происходит в газовой фазе, или (1 — к) kpd, если она происходит на поверхности твердого катализатора или в жидкой фазе. Результаты процесса, зафиксированные на хроматограмме, позволяют с учетом модифицированного уравнения (1,65) определить константы скоростей гетерогенных реакций различных порядков. [c.316]

    Кинетика реакций гидрирования и дегидрирования. Скорость этих реакций, как и для других гетерогенно-каталитических процессов, в общем случае может зависеть от диффузионных и кинетических факторов. Первые из них играют тем меньшую роль, чем интенсивнее перемешивание и турбулентность потоков и чем ниже температура. В большинстве случаев кинетика гидрирования и дегидрирования описывается общим уравнением Лэнгмюра— Хиншельвуда, выведенным для случая, когда лимитирующей стадией является химическая реакция на поверхности катализатора. Если обозначить через Ь адсорбционные коэффициенты и через р — парциальные давления реагентов, то для обратимой реакции дегидрирования при мономолекулярном расщеплении сорбированного вещества имеем [c.449]

    На основании изложенного можно сформулировать исходные положения, необходимые для математического описания процесса разрушения процесс переноса массы одномерный и стационарный исходный материал представляет собой однородную композицию веществ, входящих в его состав скорость уноса массы определяется скоростью разрушения коксового остатка за счет его химического взаимодействия с газовой средой скорость химического взаимодействия обусловлена кинетикой гетерогенных химических реакций на поверхности материала и диффузией к ней окисляющих компонент из газового потока. С химически унесенной массой кокса уносится часть инертной массы наполнителя, пропорциональная его содержанию в исходном (неразло-жившемся) материале. В процессе окисления коксового остатка участвует кислород, образующийся при испарении и последующей диссоциации окислов наполнителя. Реакционноснособные газообразные продукты разложения материала взаимодействуют с углеродом и диффундируют через газовый пограничный слой независимо от соответствующих компонент внешнего потока. На поверхности материал полностью прококсован. Все тепловые эффекты (теплоты пиролиза, гетерогенных химических реакций и т. д.) отнесены к поверхности. Режим течения газового потока турбулентный. Принимается, что имеется подобие между турбулентным переносом массы, энергии и количества движенрш, а турбулентные чпсла Ье = Рг = Зс = 1. Турбулентный пограничный слой считается замороженным, а все реакции — происходящими на поверхности. [c.103]


    Уравнение кинетики гетерогенной химической реакции, протекающей в потоке, так ЛдС как п кинетики сорбции, ложет быть получено из решения уравнения материнльного баланса (1-17) при определенных начальных и граничных ус.ювпях. Счшая концентрацию раствора вдали от поверхности реакции постоянной (благодаря потоку), получим первое граничное условие  [c.103]

    Супоницкий А. М. О расчете скорости переноса вещества в ламинарном потоке жидкости при гетерогенных химических реакциях со смешанной кинетикой.— ПМТФ, 1960, Л 2 2, с. 74—77. [c.331]

    XV. Кинетика го.иогенных и гетерогенных химических реакций в потоке 377 [c.377]

    Качественное исследование систем уравнений, оиисывающих стационарные режимы работы гетерогенных каталитических реакторов, свидетельствует о множестве стационарных состояний. Причинами множественности стационарных состояний являются нелинейности кинетики химических реакций, а также транспортные эффекты, среди которых наиболее существенны тепло- и массоперенос между поверхностью зерен катализатора и реакционным потоком, перемешивание потока в радиальном и осевом направлениях отвод (подвод) тепла, выделяющегося (поглощающегося) в ходе химических реакций [1, 2]. [c.281]

    При условии интенсивного перемешивания, турбулентности потоков и умеренной температуре реакции гидрирования на гетерогенном катализаторе, как правило, протекают в кинетической области. В общем случае кинетика описывается уравнением Лангмюра—Хиншельвуда для случая, когда лимитирующей стадией является химическая реакция на поверхности катализатора. Поскольку процессы гидрирования обычно осуществляются при больпюм избытке водорода, обратной реакцией можно пренебречь. Продукты реакции имеют значительно меньший адсорбционный коэ ициеят, чем сырье (А), поэтому обычно не учитываются в кинетическом уравнении. [c.11]

    В случае неравновесного потока необходимо учитывать ряд новых процессов передачи химической энергии, которые не учитываются в равновесных потоках или при течении идеального газа. В частности, при взаимодействии неразрушаемой поверхности с потоком существенными оказываются ее каталитические свойства. Несмотря на то, что о значительном влиянии гетерогенной рекомбинации на теплообмен при гиперзвуковых скоростях полета стало известно еще в 50-е годы [17], проблема описания гетерогенных каталитических процессов в гиперзвуковых потоках остается актуальной и в настоящее время. По сравнению с кинетикой гомогенных реакций механизм и скорости процессов, определяющие взаимодействие газа с поверхностью гораздо менее изучены и выражены количественно. Тем не менее, понимание и контроль за этими процессами имеют решающее значение для разработки и создания теплозащитных систем, применяемых при входе космических аппаратов в атмосферу планет. Так, если отличие в тепловых потоках для различных моделей гомогенных химических реакций достигает 25 %, то тепловые потоки, полученные при различных предположениях о каталитических свойствах поверхности, отличаются значительно больше. Тепловой поток к лобовой поверхности аппарата может быть снижен за счет использования некаталитического покрытия в несколько раз на значительной части траектории спуска, включая область максимальных тепловых нагрузок. [c.7]

    При высоких температурах процесс реагирования нротекает с большой скоростью, не успевает проникнуть внутрь и сосредоточивается на внешней поверхности. Это дает возможность пренебречь влиянием внутриобъемного реагирования. Но процесс реагирования при более высоких температурах осложняется сильным влиянием диффузии и в связи с этим — скорости н гидродинамики потока газа, а также вторичных реакций. Поэтому при исследовании реакций при высоких температурах большое значение имеет отделение влияния физических факторов, в основном диффузии, от чисто химических. Для того, чтобы наиболее просто и правильно выявить взаимосвязь между диффузией и кинетикой, исследование гетерогенных реакций и в особенности процесса горения углерода и, сопутствующих ему вторичных реакций проводилось в определенных простейших геометрических формах шарик, обтекаемый реагирующим газом (так называемая внешняя задача), канал, стенки которого реагируют с протекающим внутри пего газом (так называемая внутренняя задача), слой из шариков, продуваемый реагирующим газом, и т. д. Применяя для описания процесса дифференциальные уравнения диффузии совместно с граничными условиями, выражающими прямую связь между количеством диффундирующего газа и скоростью реакции на поверхности шарика, канала и т. п. (см. гл. VI), удалось получить хорошее соответствие теории с многочисленными экснериментальными данными [59] и др. В особенности большой вклад в разработку диффузионно-кинетической теории гетерогенного горения внесли Нредводителев и его сотрудники [59], а также Чуханов, Франк-Каменецкий [87], Зельдович и другие советские ученые. Но следует заметить, что математическая обработка экспериментальных данных с помощью диффузионно-кинетической теории горения отнюдь не даст возможности судить об элементарных химических актах (адсорбции, собственно химической реакции и т. д). На основе ее мы можем получить только суммарные константы скорости реакций (включая адсорбцию и внутриобъемное реагирование) и соответствующие величины видимых энергий активаций й суммарного порядка реакции. [c.161]

    Проточные интегральные реакторы — это обычные заполненные катализатором трубки, аналогичные применяемым в промышленности. Вывести обычными методами кинетические уравнения по данным, полученным на интегральном реакторе, можно только при исследовании простых изотермических реакций. В остальных случаях при обычной обработке результатов надежность выводов невелика, так как процесс в интегральном (в частности трубчатом) реакторе осложняется явлениями температурной неоднордности слоя и продольным перемешиванием потока. Кроме того, в трубчатом реакторе далеко не всегда удается избавиться от внешне- и внутридиффузионного торможения процесса. Поэтому дифференциальные аппараты в первую очередь следует рекомендовать для детального изучения химической кинетики гетерогенно-каталитических процессов. [c.345]

    В подобного рода гетерогенных системах взаимодействие компонентов происходит на поверхности раздела твердой и жидкой или твердой и газообразной фаз. Естественно, что в этих случаях исключительную роль играют размеры и природа поверхности твердой фазы, а также характер (лал инарность или турбулентность) потока жидкости или газа у поверхности твердого тела. Очень часто существенную роль играют процессы диффузии ( транспортирования продуктов к поверхности или от поверхности раздела фаз), которые, как известно, обусловливают передвижение реагирующих компонентов к твердой поверхности и отвод продуктов реакции с твердой поверхности в жидкую или газообразную фазу. Поэтому кинетика подобных процессов в целом будет определяться не скоростью взаимодействия компонентов (химической реакции или растворения твердого тела), а соотношением этой скорости и скорости диффузии. Если, например, скорость хи.мической реакции (или растворения) меньше, чем скорость диффузии продуктов реакции с поверхности твердой фазы в жидкую или газообразную, то она и будет определять собой кинетику процесса в целом, и наоборот, при [c.223]


Библиография для Кинетика гетерогенных химических реакций в потоке: [c.373]    [c.212]    [c.328]   
Смотреть страницы где упоминается термин Кинетика гетерогенных химических реакций в потоке: [c.48]    [c.151]   
Смотреть главы в:

Гетерогенные процессы геохимической миграции  -> Кинетика гетерогенных химических реакций в потоке




ПОИСК





Смотрите так же термины и статьи:

Гетерогенная химическая реакция

Гетерогенные кинетика

Кинетика гетерогенных реакций в потоке

Кинетика гетерогенных химических реакци

Кинетика гомогенных и гетерогенных химических реакций в потоке

Кинетика реакций в потоке

Кинетика химическая

Кинетика химических реакций

Кинетика химических реакций гетерогенных

О кинетике химических реакций в потоке

Реакции в потоке

Реакции гетерогенные

Химические потоки

Химический ая гетерогенное



© 2025 chem21.info Реклама на сайте