Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция углерода диоксида

    Возможно сочетание мембранных н традиционных способов разделения, таких как абсорбция, адсорбция, дистилляция. Интересно предложение [42] о совместной очистке природного и нефтяного (попутного) газов с высоким содержанием диоксида углерода комбинированным методом, сочетающим мембранный и абсорбционный методы (рис, 8.20). [c.299]

    Процессы химической абсорбции основаны на химическом взаимодействии сероводорода и диоксида углерода с активной частью абсорбента. [c.13]


    Очистку газа методом физической абсорбции целесообразно осуществлять только при средних и высоких парциальных давлениях кислых компонентов газа. При низких парциальных давлениях степень извлечения кислых компонентов невелика. Растворимость извлекаемых компонентов в абсорбенте можно повысить в некоторой степени путем повышения давления в абсорбере, но при этом одновременно увеличивается растворимость углеводородных компонентов газа и, следовательно, селективность процесса будет оставаться низкой. Кислые газы, получаемые на стадии регенерации и используемые обычно для получения серы, содержат в этом случае большое количество углеводородов, что нежелательно для процесса Клауса. Повысить концентрацию кислых компонентов можно ступенчатой дегазацией насыщенного абсорбента с постепенным понижением давления, но в газах дегазации, как правило, помимо углеводородов присутствуют сероводород и диоксид углерода, и [c.42]

    Диоксид углерода удаляют регенерированным раствором кар — боната калия в две ступени. На I ступень для абсорбции основной части СО подают более горячий раствор К СО. в середину абсорбера. Доочистку от СО проводят в верхней части абсорбера, куда подается охлажденный в теплообменниках до 60 — 80 °С раствор К СОз. [c.164]

    В нефтяной и газовой промышленности процесс абсорбции применяется для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина абсорбцию применяют для очистки природных газов от кислых компонентов — сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п. с помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей. [c.192]

    В процессе вакуум-карбонатной сероочистки улавливается, в зависимости от плотности орошения и содержания сероводорода в газе от 40-60 до 90 % цианистого водорода. На отечественных установках поглощение сероводорода проводится преимущественно в аппаратах с деревянной хордовой насадкой. В связи с тем, что скорость абсорбции сероводорода значительно больше таковой для диоксида углерода, оправдано применение аппаратов с малым временем контакта между газом и жидкостью, с провальными или пластинчатыми тарелками. Это позволит получить при регенерации более концентрированный сероводородный газ. [c.269]


    Состав и качество кислых газов, с точки зрения использования их в процессе Клауса, зависят прежде всего от выбранного способа очистки газа (физическая или химическая абсорбция, адсорбция и т.д.). Кроме сероводорода в полученном в процессе очистки кислом газе присутствуют в большей или меньшей степени диоксид углерода, серооксид углерода, сероуглерод, меркаптаны, азот, могут присутствовать в небольших количествах сульфиды и т.п. [c.92]

    Абсорбционные методы. Абсорбция водой — распространенный метод улавливания диоксида углерода из газов. Основные преимущества метода — доступность и дешевизна абсорбента, недостатки — невысокая поглотительная способность водой диоксида углерода (8 кг СО2 на 100 кг абсорбента) и небольшая селективность. Наряду с диоксидом углерода в воде растворяются водород, оксид углерода, азот и др. Поэтому выделяющийся диоксид углерода недостаточно чистый. [c.48]

    Для очистки нефтяных и природных газов от сероводорода, диоксида углерода и других серо- и кислородсодержащих соединений применяют абсорбционные процессы, которые в зависимости от взаимодействия этих соединений с растворителями (абсорбентами) подразделяются на частные процессы физической и химической абсорбции. [c.5]

    Для комплексной очистки природных и нефтяных газов от сероводорода, диоксида углерода и сероорганических соединений применяются процессы, в которых используют водно-неводные поглотители, включающие алканоламины (для хемосорбции H S и СО ) и различные органические растворители (для физической абсорбции OS, RSH и [c.60]

    На установках низкотемпературной абсорбции и конденсации газа извлекается 40-50%) этана. Для повышения степени его извлечения из газа используют схему с внешним охлаждением пропановым и этановым холодильными циклами или схему с применением турбодетандера и пропановым холодильным циклом. При низких температурах, используемых для извлечения этана, даже небольшие следы растворенного диоксида углерода создают серьезные затруднения. Для достижения высокой полноты извлечения этана из газа следует предварительно удалить СО2. [c.91]

    Газы, молекулы которых образуют водородные связи и химические соединения с молекулами воды, растворяются весьма хорошо. Так коэффициенты абсорбции Оствальда диоксида углерода, хлора, сероводорода, диоксида серы и аммиака при 25 °С составляют соответственно 0,828 2,236 2,51 35,14 312,7. [c.40]

    Схема и параметры работы комбинированного метода (мембранное разделение и абсорбция) очистки газа с высоким содержанием сероводорода и диоксида углерода даны на рис. 8.21 ив табл. 8.12 [65]. [c.300]

    Равновесная растворимость диоксида углерода зависит от давления газа, температуры абсорбции и концентрации раствора. Обычно используют 15—20%-ный растворы моноэтанол-амина. Абсорбция протекает при 40—45 °С и давлении 1,5— [c.49]

    А — максимально возможное количество диоксида углерода, которое может абсорбироваться в колонне абсорбции его — отношение углерода к водороду у ц — концентрация метана в синтез-газе УИ — молекулярные массы. [c.367]

    В ряде случаев поглощение одного вещества другим пе огра-ничииается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбцией. Примером процесса абсорбции является растворение га ,ов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют х е м о с о р б ц и е и. Так, поглощение аммиака или хлористого водорода водой, поглощение влаги и кис-лорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция — примеры хемосорб-циоиных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском ясид-кости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над [1лоской поверхностью жидкости при той же температуре. [c.320]

    Абсорбция метанолом ( ректизол -процесс) — более вигод-ный метод, его можно использовать при температуре до —60 °С, когда резко повышается поглотительная способность метанола. Так, при —60 °С и давлении около 0,4 МПа в 1 г метанола может раствориться до 600 см диоксида углерода. Избирательность метанола по отношению к диоксиду углерода значительно выше, чем воды. Диоксид углерода из раствора выделяют понижением давления м повышением температуры. [c.48]

    В последние годы изучаются пути снижения поступления в атмосферу диоксида углерода (например, абсорбцией водой океанов), являющегося причиной парникового эффекта на Земле. [c.391]


    Очищенный углеводородный газ, выходящий с верха абсорбционной колонны 9, проходит газосепаратор 13, затем выводится с установки. Насыщенный раствор МЭА с низа колонны 9 нагревается в теплообменниках 11 я проходит регенерацию в десорбере 14. Регенерированный раствор МЭА с низа десорбера 14 забирается насосом 12, прокачивается через теплообменники И и холодильник 10 и возвращается на абсорбцию в колонну 9. Низ десорбера 14 подогревается за счет тепла кипятильника 17. Выходящие с верха десорбера 14 сероводород и диоксид углерода направляются в десорбер 6. Вместе с десорбированными Н.,5 и СО, после I ступени очистки газы проходят водяной холодильник 15, где конденсируются водяные пары, и попадают в газоводоотделитель 16. С верха газосепаратора выводятся кислые газы (сероводород, диоксид углерода и примеси), [c.58]

    Карбамид из бункера 1 подается транспортером 2 в реактор 3, обогреваемый топочными газами. Реактор может быть выполнен в виде аппарата с псевдоолсиженным слоем катализатора. Образующаяся там смесь вместе с аммиаком сразу поступает во второй реакционный аппарат 4, где происходит синтез меламина. Смесь аммиака, диоксида углерода и сублимированного мелами-па охлаждается в смесителе 5 за счет впрыскивания холодной воды. В сепараторе 6 диоксид углерода, аммиак и пары воды отделяются от суспензии меламина в воде. Газо-паровая смесь поступает в насадочный скруббер 7, орошаемый охлажденным в холо-дпльнике 8 водным раствором аммиака. При этом вода конденсируется, а диоксид углерода дает с аммиаком карбонат аммония, водный раствор которого выводят из куба колонны 7 и направляет в цех производства карбамида. Избыточный аммиак, не погло-"ивщийся в скруббере 7, освобождается от воды в насадочной колонне 9, орошаемой жидким аммиаком (испарение жидкого ам->1иака способствует конденсации воды). Аммиачную воду из куба колонны 9 направляют в аппарат 7, где ее используют для абсорбции диоксида углерода, а рециркулирующий газообразный аммиак возвращают в реактор 3. [c.236]

    Установка состоит из следующих секций подготовки сырья (компрессор, подогреватель, аппараты для очистки сырья от соединений серы, пароперегреватель и инжекторный смеситель) паровой конверсии (печь паровой конверсии и паровой котел-утилизатор) конверсии оксида углерода в диоксид (реакторы средне- и низкотемпературной конверсии) очистки технологического газа от диоксида углерода (абсорбция горячим водным раствором карбоната калия, регенерация и др.) и секции метаниро-вания. Технологическая схема установки представлена на рис. VI-4. [c.62]

    Анализ усредненных показателей работы установки показал, что в зависимости от исходного содержания кислых компонентов в газовой смеси, соотношения жидкость/газ, температурного режима абсорбции и десорбции, содержания полисульфида амина в рабочем растворе, степень очистки по меркаптановой сере составляет 44...87%, по сероводородной сере - отсутствие. Эти испытания показали возможность комплексной очистки природного газа от сероводорода, диоксида углерода, а также от меркаптанов с применением полисульфида амина в составе абсорбента на основе алканоламинов. [c.75]

    С Юсоб очистки газа от сероводорода и диоксида углерода выбирают в зависимости от содержания этих примесей. При значи-телы ом их количестве чаще всего ведут абсорбцию этаноламина-ми с последующей полной нейтрализацией газов кислотного характера щелочью в скрубберах при небольшой концентрации НзЗ и ССо достаточно промывать газы водным раствором щелочи. Очистка водным раствором этаноламинов основана иа том, что эти органические основания дают с сероводородом и диоксидом углерода довольно стабильные при низкой температуре соли, которые ири нагревании диссоциируют  [c.47]

    Окисление этилена воздухом оыло первым вариантом технологии синтеза оксида этилена, имеющим значительное распространение н до настоящего времени. Упрощенная схема его изображена на рис. 128. Окисление осуществляют последовательно в двух трубчатых реакторах 2 и 5 с промежуточной абсорбцией оксида этилена из реакционных газов после первой ступени. Этим достигается специфическая для данного процесса возможность снизить дальнейшее окисление а-оксида при увеличении степени конверсии этилена и, следовательно, повысить селективность процесса. Это, кр5ме того, позволяет осуществить циркуляцию газа на первой стутени окисления, что ведет к более полному использованию этилена и кислорода и снижает взрывоопасность смесей благодаря их [ эзбавлению азотом и диоксидом углерода. [c.435]

    Процесс поглощения проводят при 40—45°С. Образовавшиеся в результате абсорбции карбонаты и гидрокарбонаты разлагаются в десорбере с выделением СО2 нагренанием до 120°С. Этот абсорб-ционно-десорбционный процесс (см. рис. И) применяется также в производстве диоксида углерода (сухого льда) из топочных газов. В качестве поглотителей СО2 также могут применяться органические вещества метанол, пропиленкарбонат С4Н6О3, сульфо-лан 4H8SO2. [c.87]

    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]

    Рассмотрены основные процессь[ очистки природного газа от кислых компонентов (сероводорода, диоксида углерода и меркаптанов) и производство серы методом Клауса. Приведены классификация и технологические схемы установок очистки и разделения углеводородных газов. Изложены основные принципы выбора поглотителей для очистки гаэа и обоснована стратегия выбора оптимальных технологических режимов. Приведены классификация низкотемпературных процессов разделения углеводородных газов (низкотемпературная конденсация, ректификация, абсорбция и адсорбция) и особенности технологических схем соответствующих установок. Изложены основные этапы получения гелия из природного газа и представлены технологические схемы отечественных установок получения гелиевого концентрата и тонкой очистки гелия. [c.2]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

    В процессах физико-химической абсорбции используют комбинированные абсорбенты - смесь физического абсорбента с химическим. Для этих абсорбентов характерны промежуточные значения растворимости кислых компонентов газа. Эти абсорбенты позволяют достигать тонкой очистки газа не только от сероводорода и диоксида углерода, но и от сераорганических соединений. Наибольшее промышленное применение нашел абсорбент Сульфинол , представляющий собой смесь диизопропаноламина (30-45 %), сульфолана (диоксида тетра-гидротиофена 40-60 %) и воды (5-15 %). Б последние годы широко стал внедряться в промышленные процессы абсорбент Укарсол , разработанный фирмой Юнион карбайд (США) [c.14]

    На Оренбургском ГПЗ прошел испытания и планируется к внедрению процесс Мерокс для очистки широкой фракции легких углеводородов (ШФЛУ) и доочистки природного газа от меркаптанов после установки аминовой очистки [2]. Процесс доочистки природного газа от меркаптанов проводили 10 %-ным раствором щелочи, содержащим 0,1 % гомогенного растворенного катализатора полифталоцианина кобальта (ПФЦК). Содержание меркаптанов в сырьевом газе составляло 300-400 мг/м , сероводорода до 5,7 мг/м , диоксида углерода 0,001-0,008 %. Условия абсорбции температура 20-30 °С, давление в абсорбере 5,7-5,8 МПа, соотношение жидкость (л) газ (м ) равно 1 1. [c.39]

    Возможны рзличные варианты использования холода для улучшения энергетических показателей установки и улучшения технологических параметров. Так, например, возможно охлаждение газа перед улавливанием и в результате существенное улучшение показателей улавливания. Это позволяет перейти от абсорбции к вымораживанию бензольных углеводородов, диоксида углерода, конденсации аммиака, цианистого мдорода и сероводорода. В другом варианте коксовый газ охлаждается газом после дросселирования перед первой или второй ступенями компрессии. При этом уменьшается расход энергии на сжатие и потребная мощность внешнего привода может быть уменьшена на 55-60%. [c.156]

    Схема переработки бедного и богатого газов включает узел очистки от органических соединений серы. Очистка от сероводорода осуществляется в специальных абсорберах, в которых поток газа, вводимый снизу, орошается щелочными растворами. В качестве последних могут быть использованы калиевая соль метилаланина или калиевая соль диметилгликоля. Первая служит для абсорбции сероводорода, а вторая для абсорбции сероводорода и диоксида углерода. Для этих процессов также могут быть использованы этанолами-ны. Поглощение происходит при 20-30°С, а регенерация алкацидного раствора при 105-110°С. При этом выделяются сероводород и диоксид углерода, которые, пройдя систему охлаждения, частично растворяются в воде и направляются на переработку совместно со сточными водами. Нерастворив-шуюся основную часть газа, содержащую Н28 и СО2, направляют на установки получения свободной серы. Один объем щелочного раствора может абсорбировать до 50 объемов сероводорода. Расход щелочного раствора на 1000 м газа в среднем равен 1,2 м , причем в очищенном газе содержание сероводорода составляет 0,001 г/м  [c.157]

    Растворитель ДМЭПЭГ обладает высокой селективностью и обеспечивает избирательное извлечение сероводорода в присутствии СОа- Указанная особенность имеет важное практическое значение, так как в этом случае, используя две ступени очистки, можно получить на первой ступени хорошее сырье для производства серы (кислые газы будут иметь высокую концентрацию HjS) и на второй ступени — хорошее сырье для производства товарного диоксида углерода. Поэтому процесс Селексол может оказаться достаточно эффективным при необходимости одновременного производства обоих продуктов. Эффективность процесса возрастает с увеличением рабочего давления и содержания сероводорода и СОа в исходном газе (при 15,6 °С и 6,9 МПа растворимость HjS в 9,6 раза выше, чем Og). Процесс Селексол обладает высокой гибкостью — содержание кислых компонентов может изменяться в исходном газе в широких пределах без ухудшения качества очистки. Расход абсорбента — примерно 1 м на 1000 м исходного сырого газа. При очистке газа по методу Селексол Sa извлекается, как правило, не более 50%. Технологический режим процесса абсорбции на установках Селексол температура колеблется на [c.151]


Смотреть страницы где упоминается термин Абсорбция углерода диоксида: [c.373]    [c.49]    [c.58]    [c.115]    [c.300]    [c.234]    [c.256]    [c.6]    [c.58]   
Массопередача (1982) -- [ c.0 , c.670 ]




ПОИСК





Смотрите так же термины и статьи:

Диоксид

Диоксид углерода



© 2025 chem21.info Реклама на сайте