Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы термодинамики многокомпонентных систем

    Метод статистических ансамблей Гиббса нашел применение в области неравновесной статистической механики и неравновесной термодинамики [43]. Процессы переноса в многокомпонентной жидкости, поведение системы частиц с внутренними степенями свободы, релаксационные процессы, химические реакции в однородной среде и многие другие процессы допускают эффективное математическое описание с единых позиций па основе законов сохранения энергии, импульса и числа частиц статистического ансамбля [43—45]. [c.68]


    В самом общем виде условия равновесия между жидкостью и паром в многокомпонентных системах вытекают из применения к ним основных законов термодинамики. Основы термодинамической теории растворов были заложены Гиббсом [2]. [c.512]

    В первой части своего двухтомного труда [53] Термодинамические основы ректификации и экстракции Шуберт обсуждает принципы термодинамики многофазных систем, а также вопросы классификации и разделения бинарных смесей. Вторая часть посвящена тройным системам, экстракционному разделению двух компонентов с помощью одного или нескольких растворителей, специальным методам селективной ректификации, а также проблемам ректификации и экстракции многокомпонентных смесей. Приведенные в этой книге частные теоретические положения, справедливые для процессов ректификации, логически следуют из строгих термодинамических принципов. [c.17]

    Предлагаемая книга была задумана так, чтобы она могла служить и для ознакомления с предметом, с основами термодинамической теории фазовых равновесий и одновременно могла бы быть практическим руководством. В связи с этим в ней содержатся как основные, исходные положения термодинамики гетерогенных систем, так и рекомендации для реализации термодинамической теории в различных ее приложениях (методы расчета фазовых равновесий в многокомпонентных системах и методы проверки термодинамической согласованности экспериментальных данных о равновесии жидкость — пар). [c.3]

    Более того, такое свойство биосистем, как самовоспроизводимость, непосредственно вытекает из статистического закона больших чисел и свойств аддитивности статистических распределений термодинамических функций. Хотя гипотеза об информационных полях не нова, нам удалось показать, развивая термодинамику многокомпонентных систем, что эти поля действуют между любыми объектами природы и имеют высшую разумную статистическую основу. Статистическое информационное поле связывает самые различные объекты системы в единое целое, независимо от их пространственно-временного существования. Например, распределение числа частиц по кинетической энергии (закон Максвелла) выполняется даже в идеальных газах, т.е. в системах, где нет никаких взаимодейств1и 1, кроме механических столкновений. Существуют системы, кочорые подчиняются четко выраженным законам Бернулли, Гаусса, Пуассрнг и 1.Д. Статистические сиязи склеивают самые различные объекты в единое це- [c.19]


    В работе представлены методологическое обоснование теории, термодинамическая, статистическая модель сложного вещества. Предложены релаксационные, нестационарные, марковские модели физико-химических процессов. Теория подтверждена экспериментом на примере процессов пиролиза, поликонденсации и термополиконденсации. Анализируются отличительные особенности термодинамики многокомпонентных систем, подчеркивается особая роль энтропии в формировании их разнообразия. Рассмотрена специфическая для вещества энтропия разнообразия, рост которой является источником эволюции вещества. Излагается новое направление, необходимое при изучении сложных органических систем - непрерывный, феноменологический подход к спектрам веществ. Анализируются закономерности, открытые нами в спектрах, в частности закон связи различных свойств и спектральных характеристик систем. Последнее означает, что свет несет информацию практически о всех свойствах материи. На основе данных спектроскопии предпринята попытка построения теории реакционной способности многокомпонентных органических систем. Отмечена особая роль квазичастиц- типа структуронов и вакансионов в формировании их реакционной способности. Показана роль слабых химических взаимодействий в гидродинамике многокомпонентных жидких сред. Даны новые подходы к направленному синтезу сложных органических систем. Экологические, геохимические системы и вопросы генезиса углеводородных систем планируется рассмотреть во второй части книги. [c.4]

    СОВ приводит к связи, выражающей пропорциональность между потоком и градиентом химического потенциала, являющимся движущей силой диффузии. Коэффициентами пропорциональности являются феноменологические коэффициенты Lij. Если поток измеряют относительно одной и той же системы отсчета, то коэффициент при d jdy теоретического уравнения идентичен коэффициенту диффузии, найденному согласно закону Фика. Таким образом, D можно связать с макроскопическими свойствами раствора, например с коэффициентами активности компонентов. Уендт [46] проанализировал для многокомпонентных систем обычные коэффициенты диффузии Dij из уравнения Фика и феноменологические коэффициенты диффузии Lij. Диффузию, протекающую в изотермической системе из п нейтральных компонентов, можно описать двумя системами уравнений на основе термодинамики необратимых процессов и на основе закона Фика. Измеряя поток массы относительно неподвижного растворителя (что обозначается верхним индексом О коэффициентов), получим, с одной стороны, [c.212]

    Будучи наукой феноменологической, термодинамика ифает в Ф. х. двоякую роль. Она позволяет, с одной стороны, на основе общих принципов разделить все мыслимые процессы в хим. системах на возможные и невозможные и дает ясные критерии такого разделения. С другой стороны, термодинамика позволяет получать соотношения, в к-рые входят измеряемые на опыте величины, и с помощью этих соотношений рассчитывать важные характеристики исследуемых систем, а также предсказывать, какие из соед. будут наиб, перспективными для решения конкретных прикладных задач в тех или иных условиях. Важное направление хим. термодинамики -количеств, расчеты равновесного состава сложных многокомпонентных систем (напр., высокотемпературных сверхпроводников), расчеты диаграмм фазового равновесия, многопараметрич. оценка перспективных топлив и др. энергоносителей и т. п. [c.93]

    Создание алгоритмов для ЭВМ позволило с позиций химической термодинамики количественно рассматривать многокомпонентные гидрогеохимические системы любого фазового и компонентного состава. При определении равновесного состава появилась возможность учитывать все вероятные формы элементов, в том числе их соединения с органическими веществами. В последние годы ЭВМ все более широко используют также для расчетов гидрогеохимических явлений на основе методов физико-хи-мической гидродинамики и кинетики. Это способствовало переводу геохимического прогнозирования в гидрогеологии на новый качественный уровень, поскольку появилась возможность решать круг задач, ранее недоступных для традиционных (домашинных) гидрогеохимических расчетов. [c.203]


Смотреть страницы где упоминается термин Основы термодинамики многокомпонентных систем: [c.33]    [c.7]    [c.67]   
Смотреть главы в:

Массопередача при ректификации и абсорбции многокомпонентных смесей -> Основы термодинамики многокомпонентных систем




ПОИСК





Смотрите так же термины и статьи:

Системы многокомпонентные

Системы на основе

Термодинамики основы



© 2024 chem21.info Реклама на сайте