Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические взаимодействия слабы

    Для оценки эффективности возможных путей воздействия на скорость гетерогенной реакции очень важно знать, какая из стадий ее является в данных условиях наиболее медленной и, следовательно, определяющей скорость реакции в целом. В одних случаях этой стадией являются процессы диффузии того или другого компонента реакции из объема фазы к поверхности раздела или наоборот. В других —само химическое взаимодействие на поверхности раздела. Различие между этими случаями наиболее сильно проявляется в зависимости скорости реакции от температуры. Скорость диффузионных процессов изменяется с температурой сравнительно слабо (примерно на 1—3% на градус), а скорость химического взаимодействия—значительно сильнее (примерно на 10—30% на градус, в зависимости от энергии активации). [c.489]


    Частицы растворенного вещества, находящиеся в растворе, взаимодействуют друг с другом и с молекулами растворителя. Характер этих взаимодействий различен и зависит от типа частиц и природы сил, действующих между ними, сил ближнего и дальнего взаимодействия (см. 41, 42). Химические взаимодействия между частицами в растворе, возникающие за счет короткодействующих сил, могут быть сильными и слабыми. Сильные химические взаимодействия наблюдаются между ионами и теми частицами раствора, которые всту- [c.341]

    В образовании слабых химических связей могут участвовать как молекулы, так и ионы. Слабые химические взаимодействия, возникающие с участием молекул, наблюдаются при образовании ряда комплексов, например комплекса п-ксилола с тетрабромидом углерода, и ассоциатов, например (С Не)2. Слабые химические взаимодействия, возникающие с участием ионов, наблюдаются тогда, когда ионы имеют заполненные электронные оболочки. Примером такого взаимодействия мОжет служить взаимодействие отрицательно заряженных одноатомных ионов галогенов с нейтральными молекулами галогенов, которое приводит к образованию полиатомных ионов, например Ь, 1СЦ и др. [c.342]

    Определена энергия активации вязкого течения и ее взаимосвязь с коксуемостью и потенциалом ионизации (рис. 3, 4). Энергия активации составляет для стирольных композиций 40-90 кДж/моль. Это свидетельствует об участии слабых химических взаимодействий в процессе вязкого течения композиций. [c.110]

    Гидролизом называется химическое взаимодействие солей с водой, приводящее к образованию слабого электролита. [c.72]

    В нефтяных системах частицы дисперсной фазы могут быть обратимы или необратимы в зависимости от условий их образования за счет сил слабого взаимодействия между молекулами либо при химическом взаимодействии. Примерами указанных типов структур могут служить зародышевые комплексы соответственно твердых углеводородов нефти при пониженных температурах либо частиц смо-листо-асфальтеновых веществ в условиях повышенных температур. Вероятно, нефтяные дисперсные системы при низких температурах, когда частицы дисперсной фазы обратимы, можно считать лиофильными коллоидными (дисперсными) системами. В случае необратимости частиц дисперсной фазы эти системы от ю-сятся к лиофобным. [c.37]

    Сильные взаимодействия являются результатом химических реакций и сопровождают практически все термокаталитические процессы нефтепереработки. Средние и слабые взаимодействия наблюдаются, как правило, во внутренней структуре нативных нефтяных систем, а также в продуктах переработки нефтяного сырья в условиях, когда химические взаимодействия исключены, например при определенных термо-барических условиях, в отсутствие катализаторов химических реакций и т.п. [c.93]


    К слабым химическим взаимодействиям в первую очередь относится Н-связь Х-Н...У, где X - атом любого элемента, образующего с водородом обычную химическую связь и, особенно, обнаруживающего сильное сродство к электрону. Роль У выполняют любые атомы [18,55], к -орбитали ароматических циклов, двойных и тройных связей. Слабые химические связи могут образоваться вследствие переноса заряда, перераспределения электронной плотности в пространстве между молекулами и по другим причинам. [c.64]

    Как видно из приведенных данных, элементы подгруппы кальция в отличие от ранее рассмотренных элементов имеют относительно большие атомные радиусы и низкие значения потенциалов ионизации Поэтому в условиях химического взаимодействия кальций и его аиа логи легко теряют валентные электроны и образуют простые ионы Поскольку ионы имеют электронную конфигурацию и большие размеры (т. е. слабо поляризуют), комплексные ионы элементов под группы кальция неустойчивы. [c.573]

    Изменится ли и как константа диссоциации слабого электролита, если в качестве растворителя вместо воды взять метиловый спирт (при условии, что химическое взаимодействие между растворенным веществом и растворителем отсутствует). Дайте объяснение. [c.57]

    Таким образом, удельная электропроводность и пропорциональна концентрации электролита в растворе. Однако на опыте наблюдаются отклонения от пропорциональности, которые связаны с взаимодействием между ионами в растворе. В растворах слабых электролитов химическое взаимодействие приводит к неполной диссоциации молекул на ионы в растворах сильных (полностью диссоциированных) электролитов наблюдается электростатическое взаимодействие между ионами. Для того, чтобы провести оценку данных по электропроводности независимо от концентрации носителей заряда и их взаимодействия, введем понятие эквивалентной электропроводности X это электропроводность, отнесенная к постоянному числу носителей заряда К=% с. в зависимости от способа выражения концентра-дии (г-экв./мл или моль/мл) ее называют эквивалентной или молярной электропроводностью. [c.328]

    В опыте Г при смешивании растворов двух сильных электролитов — соляной кислоты и едкой щелочи — происходит уменьшение электропроводности раствора смеси за счет того, что в результате химического взаимодействия помимо сильного электролита хлорида натрия образуется очень слабый электролит — вода, [c.65]

    Следует отметить, что вода в природе выступает не только как растворитель. Многие природные реакции протекают с ее участием. При растворении многих веществ в воде происходит химическое взаимодействие между ионами растворенного вещества и ионами Н+ и ОН- воды, сопровождающееся образованием слабых, кислот или слабых оснований. [c.93]

    Опыт показывает, что реакция водного раствора зависит не только от наличия в нем кислот или оснований, но также и от присутствия некоторых солей. Многие соли, растворяясь в воде, способны смещать реакцию среды в ту или иную сторону. При этом происходит химическое взаимодействие между ионами соли и ионами Н+ и ОН- воды, сопровождающееся образованием слабых кислот или слабых оснований. Эта реакция получила название гидролиза соли. [c.208]

    Говоря об адсорбции органических веществ на электродах, целесообразно выделить системы с обратимой и необратимой адсорбцией. Для первых систем характерно сравнительно слабое ( физическое ) взаимодействие молекул адсорбата с электродом (как правило, это з, р-металлы Н , РЬ, Т1, 1п, Зп, В1 и др.). Адсорбция в этих системах подчиняется законам термодинамики, а поверхностную концентрацию адсорбата можно однозначно связать с его объемной концентрацией уравнением изотермы адсорбции. Для систем с необратимой адсорбцией характерно очень сильное ( химическое ) взаимодействие органических молекул с поверхностью электрода, которое нередко сопровождается деструкцией этих молекул, например разрывом связей С—Н и С—С. Такая хемосорбция органических веществ происходит, как правило, на электродах из переходных, или /-металлов, из которых наиболее полно изучены металлы платиновой группы и прежде всего сама платина. Понятия адсорбционного равновесия и изотермы адсорбции к этим системам не применимы. В самом деле, электрод с необратимо адсорбированным на нем органическим веществом можно извлечь из раствора, промыть водой и погрузить в раствор электролита, но без органического вещества при этом количество хемосорбированного вещества на электроде остается [c.4]

    Слабые химические взаимодействия наблюдаются между молекулами и ионами, при этом образуются комплексы типа НА...А.  [c.137]

    Структурная упорядоченность внутри обычной органической молекулы определяется, в первую очередь, ковалентными связями. Слабые взаимодействия типа ван-дер-ваальсовских не изменяют химических отношений атомов они действуют в сфере физических изменений вещества (агрегатные состояния). На уровне биологических макромолекул возникают условия для резкого роста значения малых сил в создании упорядоченных структур высших порядков. Переход от химических взаимодействий к биологическим знаменуется как бы усилением роли физических форм упорядочения вещества. [c.101]


    Взаимодействие молекул растворителя и молекул растворенного вещества с образованием нового соединения. Энергетический интервал этих взаимодействий очень велик — от слабых взаимодействий, проявляющихся в отклонении от состояния идеального раствора (например, при образовании раствора гелия и неона) до химических взаимодействий (химических реакций). Например, растворение триоксида серы в воде приводит к образованию серной кислоты  [c.121]

    Таким образом, уже давно было показано, что диссоциация слабых электролитов в растворах является следствием химического взаимодействия. [c.11]

    Межмолекулярные взаимодействия имеют общую природу. Однако для понимания связи между адсорбционными свойствами и структурой адсорбируемых молекул и адсорбента удобно подразделить межмолекулярные взаимодействия на разные виды по степени их усложнения и специфичности. В табл. 1.1 приведена классификация вариантов молекулярной хроматографии по видам межмолекулярных взаимодействий. Для повышения селективности в разных вариантах газовой и молекулярной жидкостной хроматографии используются комбинации различных видов межмолекулярных и слабых химических взаимодействий (в табл. 1.1 они отмечены крестиками). [c.10]

    С точки зрения правила фаз раствором называется многокомпонентная гомогенная часть системы, состав которой в известных пределах может непрерывно и произвольно меняться. В этом определении подчеркиваются два основных признака любого истинного раствора его гомогенность и переменность состава. Гомогенность раствора обеспечивается равномерным распределением молекул одного вещества среди молекул другого. Переменность состава раствора надо понимать в том смысле, что хотя растворы образуются в результате химического взаимодействия компонентов (Д. И. Менделеев), но в отличие от химических соединений они не подчиняются закону постоянства состава. Поэтому относительные количества веществ в растворе могут быть любыми и ограничены только их взаимной растворимостью. Растворы отличаются от химических соединений также характером и величинами энергии связи между частицами. Химическое соединение образуется за счет мощных валентных связей, а раствор, главным образом, за счет гораздо более слабого межмолекулярного взаимодействия. Но возможны переходные случаи, тогда по величинам энергий связи трудно бывает отличить раствор от химического соединения. [c.178]

    Основной областью применения неводных растворов является анализ органических кислот и оснований в самом широком смысле этого слова. Кислотно-основное титрование в неводных средах имеет ряд важных преимуществ. Органические растворители или их смеси могут улучшить растворимость пробы и позволяют проводить титрование слабых кислот или оснований. Далее, в среде этих растворителей можно проводить анализ соединений, вступающих в химическое взаимодействие с водой. При проведении, измерений в неводных растворителях по сравнению с водными возникает [c.121]

    Хорошо известен еще и третий путь активации молекул, когда последние встречаются и химически взаимодействуют с одноатомными ионами, атомами или радикалами, образовавшимися при распаде молекул, обладающих относительно слабой связью (Ь, не- [c.133]

    Гидриды переходных металлов по внешнему виду и некоторым свойствам подобны металлам. Характер химической связи в этих гидридах близок к металлической. Они также обладают восстановительными свойствами, но менее активны, чем ионные гидриды. Большинство из них с водой взаимодействует слабо. [c.256]

    Каждая из исходных молекул, взаимодействуя со свободной валентностью поверхности (рис. XIII,16), образует частицы, одна из которых связана слабой, а другая прочной гомеополярной связью с поверхностью. Взаимодействие между частицами, связанными слабой связью, можёт приводить к образованию продукта реакции. Частицы, связанные прочной связью, в результате предварительного перехода в состояние со слабой связью также оказываются способными к химическому взаимодействию. [c.368]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    Хром переводится в бихромат натрия Na2 r ,07, ванадий—в ванадиевую кислоту HVOj. В безводном состоянии бихромат слабо растворим в немногих органических жидкостях (спиртах). Хорошая растворимость связана с химической реакцией, что делает эти жидкости непригодными. Но для кислого раствора бихромата и ванадиевой кислоты найдены растворители (кетоны), которые не реагируют с соединениями этих металлов и хорошо растворяют только один из них. В табл. 6-9 ириведены-результаты испытания некоторых органических жидкостей на растворимость и химическое взаимодействие с безводным бихроматом натрия, его кислым (1 М НС1) водным раствором и ванадиевой кислотой. Так как метилизобутилкетон относительно дешев и слабо растворим в воде (2% при 20 С), то он рекомендуется в качестве растворителя н подробно изучен. [c.454]

    Растворы газов в жидкостях. По своей природе и свойствам растворы газов в жидкостях ничем не отличаются от других жидких растворов. Обычно концентрации газов в этих растворах незначительны, и растворы являются разбавленными. Исключение составляют отд ьные системы, в которых растворимость оказывается весьма большой вследствие химического взаимодействия растворяемого газа с растворителем, например в растворах аммиака или хлористого водорода в воде. Малая концентрация раствора приводит обычно к сравнительно слабому отличию его свойств от свойств чистого растворителя. Впрочем, в незначительной степени растворений газов в жидкостях сопровождается в общем случае и изменением объема раствора и выделением или поглощением теплоты. Растворение газа в жидкости иначе называют абсорбцией газа жидкостью. [c.325]

    Катализатор и реагирующие вещества представляют собой единую систему, в которой химические превращения испытывают не только реагенты под действием катализатора, но и катализатор в результате взаимодействия с реагентами. Под воздействием реакционной смеси устанавливается стационарный состав катализатора, характеризующийся каталитической активностью, слабо зависящей от исходного состояния катализатора. Отсюда следует, что катализатор - не просто место осуществления реакции, а непосредственный участник химического взаимодействия и активность его 1леняется под воздействием реакционной смеси. [c.86]

    Регенерация контактных масс столь же специфична, как и их отравление. Из возможных путей восстановления активности контактных масс наиболее существенными являются следующие [30]. Во-первых, летучий яд может быть удален с поверхности катализатора током чистого газа, жидкости или повыщением темйера-туры. Так, в реакции синтеза аммиака на железном катализаторе кислород и его соединения (НгО, СО) отравляют катализатор обратимо при действии очищенной смеси N2 + Нг яд вытесняется с активных центров и отравление снимается. Во-вторых, при химическом взаимодействии с реагентами яд может перейти в нетоксическую, слабо адсорбированную форму. Например, при разложении НгОг восстановление активности платины, отравленной окисью углерода, происходит выделяющимся при реакции кислородом, который окисляет адсорбированную СО до СОг. [c.69]

    Эффективность разделения смесей методом жидкостной экстракции резко возрастает, когда извлекаемое вещество, в отличие от других компонентов исходной смеси, проявляет склонность к химическому взаимодействию с экстрагентом. В таких случаях весьма высокая четкость разделения на практике достигается в одну-две ступени, при минимальном соотношении растворитёль/ сырье. Однако образующиеся соединения должны быть непрочными и уже прв весьма слабом воздействии (нагревание, разбавление) количественно разлагаться на исходные компоненты. На этом принципе основаны процессы разделения в системе жидкость—жидкость, получившие название хемосорбции. Раствор тель, селективно реагирующий с извлекаемым компонентом исходной смеси с образованием легко разрушающихся комплексов, называется хемосорбевтоК. По аппаратурному и технологическому оформлению процессы хемосорбции весьма близки к экстракционным процессам. [c.297]

    Если хемосорбция пропсходи.т с малым тепловым эффектом, то это часто означает, что параллельно идет ироцесс, который трсбусг затраты энергии (например, диссоциация молекул адсорбата иа иоверхности). В то же вре.мя ие всегда можно провести четкую границу между физической и химической адсорбциями, особенно при слабой хемосорбции, так же как вообще между физическим и химическим взаимодействиями. Физическая адсорбция отличается универсальностью и малой специфичностью. Хемосорбция характеризуется специфичностью взаимодействия, приводящего обычно к образованию поверхностного химического соединения. Сильная хемосорбция часто необратима, вместо адсорбированного венхе- ства может десорбироваться другое соединение. [c.125]

    В работе представлены методологическое обоснование теории, термодинамическая, статистическая модель сложного вещества. Предложены релаксационные, нестационарные, марковские модели физико-химических процессов. Теория подтверждена экспериментом на примере процессов пиролиза, поликонденсации и термополиконденсации. Анализируются отличительные особенности термодинамики многокомпонентных систем, подчеркивается особая роль энтропии в формировании их разнообразия. Рассмотрена специфическая для вещества энтропия разнообразия, рост которой является источником эволюции вещества. Излагается новое направление, необходимое при изучении сложных органических систем - непрерывный, феноменологический подход к спектрам веществ. Анализируются закономерности, открытые нами в спектрах, в частности закон связи различных свойств и спектральных характеристик систем. Последнее означает, что свет несет информацию практически о всех свойствах материи. На основе данных спектроскопии предпринята попытка построения теории реакционной способности многокомпонентных органических систем. Отмечена особая роль квазичастиц- типа структуронов и вакансионов в формировании их реакционной способности. Показана роль слабых химических взаимодействий в гидродинамике многокомпонентных жидких сред. Даны новые подходы к направленному синтезу сложных органических систем. Экологические, геохимические системы и вопросы генезиса углеводородных систем планируется рассмотреть во второй части книги. [c.4]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    При образовании твердого раствора электропроводность металла снижается. При размещении в пространственной решетке растворителя чуждых атомов растворенного вещества электрическое поле решетки растворителя искажается, и рассеяние элеюронов увеличивается. Электрические свойства твердого раствора обусловлены также химическим взаимодействием компонентов. При наклепе удельное электрическое сопротивление твердых растворов, так же как и чистых металлов, повьш1ается, а при отжиге понижается. При наклепе и отжиге твердых растворов, даже слабо-концентрирюванных, их электрическое сопротивление изменяется в большей степени, чем сопротивление чистых металлов в тех же условиях. [c.58]

    ММВ с образованием ассоциатов и комплексов имеют большое значение в формировании структуры и свойств нефтяных систем. Эта проблема подробно рассмотрена в работах [5.34,51,53]. Характерно, что некоторые исследователи [139] преувеличивают роль ван-дер-ваальсовых и недооценивают значение слабых химических взаимодействий в образовании ас-соцнатов и комплексов в нефтяных системах, хотя энергия ММВ компонентов в них значительно превышает энергию обычных ван-дер-ваальсовых взаимодействий даже при температурах, далеких от точки затвердевания [140]. [c.65]

    Когда газ проникает внутрь твердого тела, могут наблюдаться два различных процесса газ просто растворяется в этом теле, образуя твердый раствор, или вступает с ним в химическое взаимодействие. Когда газ уплотняется на поверхности твердого тела, можно констатировать или слабое взаимодействие между газом и твердым телом, аналогичное явлению конденсации, или сильное взаимодействие типа химической реакции. Первое явление называется физической адсорбцией, второе — химической, или активированной, адсорбцией — хемосорбцией. Пример хемосорбции — адсорбция кислорода на поверхности металлов. Часто физическую адсорбцию называют ван-дер-ваальсовой (силы, обусловливающие физическую адсорбцию, открыл Ван-дер-Ваальс). [c.164]

    Слабые химические связи, как установлено рентгенографическими исследованиями, образуются с участием не только. атомов водорода, ио и других атомов, например, связи галогенов с О, N. 5, 5е, межмолекулярные связи С. .. Н, С. .. О. Эти связи установлены по уменьшению соответствующих межатомных расстояний по сравнению с суммой ван-дер-ваальсовых радиусов атомов. Ван-дер-ваальсовы радиусы, приближенно характеризующие расстоя1Ние между центрами атомов, при котором химическое взаимодействие отсутствует, равны по Полингу следующим величинам в нм 0 — 0,140  [c.13]

    Несмотря на некоторое своеобразие ответов каждой из теорий, все они сходятся в том, что снижение энергетического барьера каталитических реакций происходит за счет предварительного химического взаимодействия молекулы реагента с катализатором. Это приводит к снижению энергетического барьера всего комплекса катализатор — реагент (рис. 7) и одновременно к расслаблению (снижению энергии) исходных химических связей. Ясно, что такое расслабление связей возможно при неполновалентном или слабом химическом взаимодействии реагента с катализатором, т. е. при образовании менее чем одноэлектронных и, во всяком случае, менее чем двухэлектронных связей. Ясно также и то, что такого рода вариация электронных зарядов исключена при взаимодействии двух молекул она становится возможной лишь, по крайней мере, цри взаимодействии реагирующей молекулы (дальтонида), с одной стороны, и катализирующей системы (бертоллида) — сдругой. [c.132]

    Закон Генри соблюдается лишь для тех газов, которые на вступают в химическое взаимодействие с растворителем, например, для N2 и др, Прн высоких давлениях отклонетя от закона Генрт наблюдаются и в случае газов, химически слабо взаимодействующих с растворителем. [c.79]

    На рис. V-27 графически показан ход изменения реакции среды при различных случаях нейтрализации (в 0,1 н. растворе). Если и кислота, и основание — сильные электролиты (НС1 и NaOH), то переход через эквивалентное соотношение между ними сопровождается очень резким скачком pH, т. е. сильным изменением реакции среды. Напротив, при взаимодействии слабых кислоты и основания (СНзСООН и NH40H) этот скачок почти отсутствует. В смешанном случае кривая нейтрализации становится несимметричной. Различие характера отдельных кривых нейтрализации имеет большое значение для количественного химического анализа. [c.194]


Смотреть страницы где упоминается термин Химические взаимодействия слабы: [c.83]    [c.111]    [c.129]    [c.31]    [c.254]    [c.136]    [c.127]   
Механизмы быстрых процессов в жидкостях (1980) -- [ c.10 , c.136 , c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие слабое

О природе водородных связей . 30. Другие слабые химические взаимодействия между электрически нейтральными молекулами

Проявление слабых взаимодействий в физико-химических явлениях

Слабов

Слабые химические взаимодействия ионов



© 2024 chem21.info Реклама на сайте