Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эволюция источники энергии

    Наше выживание сейчас в не меньшей степени, чем эволюция жизни в прошлом, зависит от защитного действия атмосферного озона против коротковолнового солнечного УФ-излучения. К тому же основным источником энергии для многих реакций, протекающих в атмосфере, служит процесс поглощения солнечного света озоном. Поэтому значительный интерес представляют измерения и интерпретация современных концентраций и распределение озона в атмосфере по высоте. Прямые измерения концентрационного профиля озона по высоте стали возможными в экспериментах с использованием ракет, высотных зондов и спутников. Эти измерения можно сопоставлять с предсказаниями гипотетических схем реакций, основан- [c.216]


    Первой ступенью в эволюции жизни на Земле была, вероятно, эволюция молекул. В водном растворе содержалось множество мелких молекул, которые беспорядочно образовывались под действием солнечного света, разрядов молний и других источников энергии и обладали способностью катализировать реакции, приводившие к синтезу копий самих себя. По-видимому, этот процесс проходил в две стадии во-первых, под влиянием каталитического действия (как на матрице) шло образование молекулы, комплементарной по структуре первоначальной молекуле, а затем эта вторая молекула служила матрицей для образования новой молекулы, которая была идентична первоначальной молекуле. Тот факт, что такой двухстадийный процесс репликации (или эквивалентный ему одностадийный процесс репликации молекулы, состоящей из двух комплементарных частей) осуществляется в настоящее время нуклеиновыми кислотами при репликации генов, позволяет предположить, что первыми самовоспроизводящимися молекулами на Земле были действительно молекулы нуклеиновой кислоты. Учитывая важную роль, которую белки играют в живых организмах, полагали, что именно они должны были быть первыми самоудваивающимися молекулами, однако существующие в этом отношении данные говорят в пользу нуклеиновых кислот. [c.465]

    Следовательно, всю совокупность взаимодействия молекулярного кислорода с клеткой, с точки зрения лежащих в основе этого химических механизмов, можно свести к участию О2 в двух типах реакций, в первом из которых он выступает в качестве конечного акцептора электронов, а во втором происходит его прямое внедрение в молекулу вещества. Только первый тип реакций с участием молекулярного кислорода может стать источником энергии для клетки. Поэтому для нас важно проанализировать эволюцию взаимодействия клетки с О2 по пути формирования ею систем, включающих использование молекулярного кислорода в качестве конечного акцептора электронов. [c.347]

    История металлопорфириновых комплексов на этом еще не заканчивается. К знаменитому закону Паркинсона можно было бы добавить еще один подпункт организмы развиваются, чтобы приспособиться к имеющимся источникам пищи. Когда появились новые источники энергии, стали развиваться многоклеточные организмы. Но при этом возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться просто диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда. [c.260]

    Эволюция источников электрической энергии  [c.239]

    Г. Гаффрон, рассматривая этапы фотохимической эволюции, подчеркнул, что главным источником энергии в добиологическую эру, кроме теплоты, было ультрафиолетовое излучение и частично разряды. Продуктами реакций в ранние периоды химической эволюции были, главным образом, простые молекулы, получившиеся в результате различных радикальных процессов, но в их числе уже могли быть глицин, аденин и другие важные компоненты биологических конструкций. Несколько позже появились пептиды и порфирины и начался деятельный катализ соединениями железа и, вероятно, другими соединениями металлов (медь, кобальт, цинк). Ультрафиолет уступает место видимому свету. Начинаются фотохимические реакции на больших молекулах. Все более важной делается роль матриц и результатов многократных репликаций. Образуются первые ферменты и те формы, которых мы не знаем, но существование которых должны предполагать первичные формы жизни, уже имеющие примитивный генный аппарат. [c.140]


    Полагают, что по мере образования в ходе биохимической эволюции более сложных органических молекул некоторые из них оказались способными использовать солнечную радиацию как источник энергии для синтеза новых клеточных материалов. Возможно, что включение этих веществ в уже существующие клетки позволило последним синтезировать новые клеточные материалы, поэтому им больше не надо было по- [c.277]

    Поступающие в клетку вещества используются не только как источник энергии, но и как строительный материал, поскольку в ней происходит постоянное обновление структурных компонентов. Продукты этих превращений, т. е. продукты обмена, выводятся из клетки во внешнюю среду. Химические пути образования необходимых для организма веществ отличаются уникальной селективностью и достаточно высокой скоростью. Для этого природа в ходе своей эволюции создала биологические катализаторы — ферменты, обеспечивающие высокую скорость и селективность биохимических превращений (см. главу 2). [c.30]

    Для современных эукариот характерно не только наличие митохондрий, им присущ целый ряд особенностей, отличающих их от прокариот (табл. 1-1). Вместе все эти особенности наделяют эукариотические клетки большим количеством различных потенциальных возможностей, и трудно сказать, какая из них возникла раньше других. Заметим, что важнейшим шагом на пути эволюции было появление митохондрий в анаэробных эукариотических клетках, поскольку вместе с ними клетки получали эффективный источник энергии и могли направить ее на усложнение своих функций. [c.33]

    В большом числе работ было показано, что при наличии источников энергии, доступных, вероятно, и в условиях первобытной Земли, происходит образование этих двух групп реакционноспособных соединений (например, H N и НСНО) из очень простых реагентов. В табл. 17 суммированы результаты подобных экспериментов. В большинстве работ, цитируемых в этой таблице, ставились совсем иные задачи, нежели выяснение возможных путей химической эволюции, и тем не менее их результаты представляют интерес также с этой точки зрения, ибо свидетельствуют о том, что интересующие нас продукты могут быть получены в очень простых условиях. Таким образом, можно считать, что эти реакционноспособные соединения вполне могли образовываться на первобытной Земле в условиях, которые, как полагают, существовали на протяжении процесса химической эволюции. [c.168]

    А. Совершенно с Вами согласен Разрешите мне сделать в конце одно общее замечание. Я считаю, что исследованиям, связанным с химической эволюцией, присуща одна особенность, отличающая их от большинства биохимических исследований. Мне кажется, что биохимические исследования, как правило, связаны с развитием аналитических методов, позволяющих выяснять природу явлений, имеющих место в живых системах. В этом смысле обычные биохимические исследования являются по своему существу аналитическими. В то же время я представляю себе исследования процессов химической эволюции и биогенеза как направление по сути своей синтетическое. Мы знаем, что представляют собой в настоящее время живые системы, и знаем, что условия на первобытной Земле были очень простыми, а доступные источники энергии — самыми обычными. И на этой основе мы должны создать некую общую схему, которая принимала бы во внимание все эти обстоятельства и которая объясняла бы в конечном счете эволюцию живых систем. Я вижу тут благоприятную почву для многих новых оригинальных идей. [c.331]

    И, наконец, необходимо отметить, что исследования процессов химической эволюции, помимо того что они представляются нам полезными в общенаучном плане, могут принести пользу и для решения еще одной важной проблемы, а именно мировой проблемы продовольственных ресурсов. Синтез важных питательных веществ из простых и легкодоступных соединений (например,. СО, N2 и Н2О) с помощью самых обычных источников энергии [c.331]

    Первичный источник энергии в биохимической эволюции. Вслед за В. П. Скулачевым [266] можно считать наиболее вероятным источником энергии во времена возникновения жизни свет. Этот вывод означает допущение первичности фотосинтеза, возникновения его в самом начале совершенствования систем энергетических превращений в биологических системах. Конечно же, речь не идет о процессе, подобном современному фотосинтезу. Ясно, что только избирательное поглощение излучения способно обеспечить энергией лишь определенные процессы, а не все реакции, как, например, при нагревании. В процессах, идущих в первичных матричных структурах, существование такой избирательности вполне вероятно. Для нуклеиновых оснований характерно сильное поглощение в области 260 нм, что соответствует (в расчете на 1 моль) порции энергии около 100 ккал. Это, конечно, слишком много, но для начала эволюционного совершенствования вполне терпимо. Основной результат поглощения света с такой длиной волны полинуклеотидными цепями — разрыв валентных связей [154], например, отрыв нуклеинового основания от рибозы, замена одного основания на другое. Вследствие интенсивных мутаций и обусловленных ими вариаций последовательности аминокислот в полипептидной цепи происходил отбор катализаторов, способствующих синтезу пигментов, которые поглощают видимое и ближнее инфракрасное излучение, соответствующее нужным квантам энергии. [c.105]

    Кажется вполне вероятным, что автотрофный тип конструктивного метаболизма формировался параллельно с формированием аппарата для использования энергии света, поскольку на первом этапе эволюции энергетические и конструктивные процессы зависели от одних и тех же органических источников и, следовательно, прокариотные организмы одновременно были поставлены перед проблемой поиска новых источников энергии и углерода. [c.249]


    Для выполнения всех этих процессов необходима пища, служащая источником энергии. Накопление богатых энергией соединений углерода, происходившее в предшествующий период химической эволюции, создало запасы веществ, пригодных в качестве потенциальной пищи. [c.238]

    Число разных соединений в организме человека велико, но в окружающей среде, включая организмы других видов, оно несравненно больше. Вещества среды, не используемые организмом для пластических целей или как источники энергии, называют чужеродными веществами (ксенобиотиками). Они могут попадать в организм с пищей или путем вдыхания, или через кожу многие из них могут быть токсичными. В процессе эволюции животные и человек постоянно встречались с этими веществами, поэтому выработались механизмы их детоксикации и выведения из организма. Кроме чужеродных соединений, детоксикации (инактивации) и выведению подвергаются некоторые собственные метаболиты, например продукты распада гема, стероидные гормоны, катехоламины и др. Главным органом, где происходит детоксикация веществ, является печень, хотя и другие органы тоже участвуют в этом процессе. Через печень протекает около 1,2 л крови в минуту, причем 70 % ее поступает через воротную вену, собирающую кровь от пищеварительного тракта. Такое положение печени определяет ее важную роль в превращениях веществ, всасывающихся из кишечника, и в регуляции их концентрации в крови. [c.458]

    Как показали результаты моделирования глобальных процессов развития цивилизации, при современном уровне энергопотребления развитых стран за счет возобновляемых источников энергии на Земле может существовать не более 500 млн чел., что в 10 раз ниже уже достигнутой численности населения. Мы живем за счет тех своеобразных энергетических консервов , которые приготовила биосфера за более чем 300 млн лет эволюции, начиная с каменноугольного периода, Эти ресурсы громадны, но современная скорость их потребления в миллион раз превышает скорость процессов их естественного формирования в земной коре. За один год человечество расходует запасы, на образование которых природе требуется миллион лет. Очевидно, что с учетом темпов роста мирового энергопотребления эти запасы могут обеспечить потребности человечества в течение примерно сотни лет, [c.77]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    Базисная реакция является, таким образом., не только источником энергии, необходимой для полезной работы в системе, которая направлена против равновесия, но и орудием отбора наиболее прогрессивных эволюционных изменений ЭОКС. И хотя этот отбор определяется количественными параметрами эволюционных изменений и, в первую очередь, величиной абсолютной каталитической активности, от которой всецело зависит скорость базисной реакции, он служит предпосылкой отбора качественной вещественной основы химической эволюции, т. е. отбора э. емеитов, структур и надмолекулярных образований. Таким образом, знание механизма отбора, определяемого основным законом эволюции, дает исчерпывающее объяснение хемогенеза веществ строго определенного состава, строения, оптической активности, определенной очередности мономерных фрагментов в высокоорганизованных полимерах с определенным комплексом физико-химических свойств. [c.205]

    Возможные источники энергии для первично химической эволюции (по Ка.1 ьсину, 97 ) [c.14]

    Появление Оз открыло новые возможности для совершенствования системы получения живой клеткой энергии из химических соединений. Формируется способ получения энергии, основанный на глубоком окислении неорганических и органических соединений окружающей среды. (Органические соединения — теперь. соединения, имеющие биогенное происхождение.) Этот способ связан с созданием новой системы электронного транспорта, в принципе сходной, но не идентичной фотосинтетической системе переноса электронов, и сопряженного с ней механизма фосфорилирования —окислительного фосфорилирования. Последний, по современным представлениям, аналогичен механизму фотофосфорилирования. В группах эубактерий обнаружено огромное разнообразие типов жизни, у которых основным источником энергии служит окислительное фосфорилирование. Различия заключаются в природе доноров и акцепторов электронов. Таким образом, все современные способы получения энергии живыми организмами сформировались на уровне прокариотной клеточной организации и их становление может быть прослежено в эубактериальной ветви. В процессе дальнейшей эволюции развитие получили только наиболее совершенные варианты. [c.438]

    Эволюция прокариот. Согласно распространенному, хотя и весьма гипотетическому представлению, в восстановительной первичной атмосфере происходило развитие прокариотических организмов (рис. 17.5). Первыми прокариотами, которые могли появиться в водоемах, богатых органическими веществами, были организмы, существовавшие за счет брожения и обладавшие основными функциями анаэробного обмена (фруктозобисфосфатный и пентозофосфатный пути). Если предположить, что в водоемах имелись тогда и сульфаты, то следующим достижением органической эволюции мог быть эффективный транспорт электронов с созданием протонного потенциала как источника энергии для регенерации АТР. На этом этапе эволюции, вероятно, возникли производные тетрапиррола, содержащие железо или никель, а также автотрофный способ ассимиляции углерода (путь ацетил-СоА). Как реликты тех времен могут рассматриваться метанобразующие и ацетогенные бактерии, а также бактерии, восстанавливающие сульфаты до сульфида, которые, за рядом исключений, могут использовать Hj, Oj и некоторые продукты брожения. [c.519]

    Таким образом, этот метаболический путь предстайляет собой еще один потенциальный механизм анаэробного синтеза АТФ. НАД для пнруватдегидрогеназы, так же как и в случае а-кетоглутаратдегидрогеназы, может регенерироваться с помощью фумаратредуктазы. Вероятно, этот путь более выгоден для тех факультативных анаэробов, для которых глюкоза служит единственным источником углерода и энергии. В отличие от этого у двустворчатых моллюсков концентрации свободных аминокислот могут быть в 100 раз выше, чем в тканях млекопитающих, и эти вещества считают важным потенциальным источником энергии. Для таких организмов, вероятно, более выгоден путь, проходящий через а-кетоглутарат, поскольку в этом случае обмен глюкозы оказывается сопряженным с катаболизмом аминокислот. Возможно даже, что именно наличие аминокислот привело в ходе эволюции к появлению у пируват-дегидрогеназы новой функции, состоящей в генерировании аце-тил-КоА для конденсации с оксалоацетатом, в результате которой образуется цитрат. [c.71]

    Наглядным примером может служить подробно рассмотренный ранее процесс взаимодействия глюкозы с дикнслородом. Стандартная энергия Гиббса этой реакции очень велика ДОгл = = —2880 кДж/моль, т.е. ДОгл<СО, и с термодинамической точки зрения данная реакция очень выгодна. Недаром в процессе биологической эволюции эта реакция была отобрана в качестве основного источника энергии для обеспечения жизнедеятельности высших организмов. Однако из повседневного опыта хорошо известно, что чистая глюкоза как в твердом состоянии, так и в растворах в присутствии кислорода воздуха сохраняется весьма долго без заметного изменения исходного количества, т. е. реакция практически не идет. [c.392]

    Способность выполнения ряда специфических функций, возникшая в процессе длительной эволюции нервной системы, отразилась также на формировании ее особого химического состава и определенной специфики метаболизма. Здесь можно отметить и высокую концентрацию в нервной ткани липидных веществ, в частности липопротеидных и липонуклео-протеидных надмолекулярных комплексов и огромные скорости протекания метаболических процессов и исключительную интенсивность потребления энергии и связанное с этой особешюстью весьма эффективное использование ряда аминокислот в качестве источников энергии и исключительное развитие биохимических аппаратов образования аминокислот из глюкозы и наличие множества альтернативных путей превращения веществ, выполняющих в деятельности нервной системы особо важную роль и развитые механизмы пространственного разобщения метаболитов, отличающихся по обменной активности и необычные механизмы транспорта биологически важных веществ но отросткам нейронов на периферию клетки и специфическую локализацию в нервной ткани таких соединений, как протеолипиды, некоторые виды ганглиозидов, ГАМК, К-ацетил-Ь-аспарагиновая кислота и др. и высокую активность био- [c.19]

    Учитывая высокую химическую активность кислорода и его способность реагировать с большинством компонентов цитоплазмы, можно сделать вывод, что для многих ранних организмов кислород, видимо, был токсичен (как и для многих современных анаэробных бактерий). Однако именно благодаря высокой реакционной способности кислород способен выступать в роли поставщика химической энергии, и не удивительно, что в ходе эволюции организмы использовали это свойство. С помощью кислорода живые существа способны более полно окислять молекулы пищи. Например, в отсутствие кислорода глюкоза может быть расщеплена только до молочной кислоты или этилового спирта, конечных продуктов анаэробного гликолиза. В присутствии же кислорода глюкоза полностью расщепляется до Н2О и СО2. Таким способом можно получить значительно больше энергии из каждого грамма глюкозы. Энергия, высвобождаемая при аэробном окислении молекул пищи, называемом обычно дыханием, используется для синтеза АТР. подобно тому как у фотосинтезируюших организмов АТР образуется за счет солнечной энергии. В обоих случаях происходит ряд последовательных реакций переноса электронов, которые создают разность концентраций ионов Н" внутри и снаружи небольших ограниченных мембранами компартментов. Полученный таким образом градиент концентрации Н служит источником энергии для синтеза АТР. На сегодняшний день дыхание характерно для подавляющего большинства организмов, включая и большинство прокариот. [c.27]

    Структуру, функцию и эволюцию клеток и организмов в значительной мере можно связать с их потребностью в энергии. Мы уже видели, что механизмы использования таких разных источников энергии, как свет и окисление глюкозы, в основе своей одинаковы. По-видимому, эффективный способ синтеза АТР появился еще па раппих этапах эволюции и с тех пор подвергся лишь пезпачительпым измепепиям. Как же впервые возникли ключевые компоненты электронтранспортной цепи - АТР-синтетаза, протонные насосы, использующие энергию окислительновосстановительных процессов, и фотосистемы Гипотезы о событиях, происходивших в ходе эволюции, проверить трудно. Однако ключи к разгадке можно найти как в различных примитивных электронтранспортных цепях, сохранившихся у некоторых современных бактерий, так и в геологических данных относительно условий, существовавших на Земле миллиарды лет назад. [c.477]

    ЛИ, ЧТО значения определенных физических параметров в неко торых локальных зонах, возможно, сильно отличались от средних значений для всей Земли. В самом деле, разнообразие специфических микроусловий на современной Земле поразительно так> например, температура может варьировать от —71 (в Верхоянске) 152] до 645 °С (зарегистрирована в Долине Десяти Тысяч Дымов) 149]. Если и на первобытной Земле условия были столь же разнообразны, то немедленно возникает следующий вопрос правомерно ли ограничиваться в модельных экспериментах только общими геохимическими условиями или же следует расширить эти довольно узкие границы и рассматривать в экспериментах также специфические условия Фокс [53] утверждает, что возникновение жизни нельзя рассматривать как некий общий геохимический феномен. Он полагает, что жизнь возникает в весьма специфических, локально существующих условиях. Как предполагает Фокс, необходимые условия могли возникнуть в результате процессов, происходивших в самих вулканических пенловых конусах и вблизи них. В то же время Юри [17] утверждает, что тепловая энергия, источником которой служит вулканическая активность, играла лишь ничтожную роль в процессах химической эволюции при этом он исходит из того, что на современной Земле вулканы пространственно разобщены, а извержения случаются редко. Фокс [54] возражает на это, что лавовые покровы занимают 3% земной поверхности и что примерно в 10—15 см от поверхности пеплового конуса температура достигает 160 °С даже в тех слу чаях, когда изсержений не происходит в течение нескольких лет Если это выделение вулканического тепла на поверхность распро странить на геологические промежутки времени (взяв, например первые 0,5 млрд. лет земной истории и принимая вместе с Хол лендом [21], что на протяжении этого периода существовала маг матическая активность), то кумулятивный эффект этого тепла действительно может оказаться достаточным для того, чтобы влиять на процессы химической эволюции. Другие специфические источники тепла — горячие источники и фумаролы — могли поставлять дополнительные количества тепловой энергии. Несмотря на все эти соображения, многие исследователи склоняются, но-видимому, к той точке зрения, что в модельных экспериментах допустимо применять только такие источники энергии, которые распространены. более или менее равномерно и действуют в течение достаточно длительного промежутка времени. Эксперименты с использованием тепла в качестве источника свободной энергии будут подробно рассматриваться в гл. IV—VI. [c.141]

    В этих экспериментах важная роль принадлежит цианиду и альдегидам. Модель добиологического развития, каковы бы ни были ее детали, можно принимать всерьез лишь в том случае, если в экспериментах, опирающихся на нее, наблюдается образование соединений, имеющих биологическое значение. Это требование обусловлено принципом биохимического подобия, который мы обсуждали в гл. I. Согласно этому принципу, соединения, имеющие общее биохимическое значение в настоящее время, были столь же важны и в ходе первичного биогенеза. В описанных экспериментах в числе прочих продуктов образовывались аминокислоты, причем этот результат был многократно подтвержден. При описываемом подходе эксперименты проводятся с простыми исходными реагентами и в таких условиях, которые с больнюй степенью вероятности существовали на первобытной Земле. Однако выходы продуктов были, как правило, невелики, хотя подводилось довольно большое количество энергии (табл. И и 12). Учитывая все это, нельзя с уверенностью утверждать, что электрические разряды служили важным источником энергии в процессе химической эволюции. Обсуждаемая нами модель основана на предположении, согласно которому атмосфера древней Земли имела восстановительный характер. Адекватность такой модели целиком зависит от надежности доказательств, приведенных в гл. III. [c.159]

    Целью данной главы было рассмотрение различных подходов, разработанных для изучения тех путей, в результате которых в ходе химической эватюции возникали соединения, необходимые для появления биологических систем. Прежде всего каждый подход соответствует какой-либо частной модели первобытной Земли (с учетом природы доступных реагентов, источников свободной энергии и т. д.). Что касается синтеза аминокислот, то эксперименты оказались успешными при использовании самых разных смесей реагентов и источников энергии. После выяснения промежуточных и конечных продуктов этих реакций перед нами возникла довольно законченная картина. Тот факт, что в большом числе экспериментов по синтезу аминокислот из разнообразных реагентов и при участии самых разных источников энергии всегда образуются S качестве промежуточных продуктов нитрилы и альдегиды (в частности, H N и формальдегид), говорит о том, что Эти соединения играли весьма существенную роль в процессах химической эволюции. Таким образом, в тех условиях, которые почти наверняка были широко распространены па древней Земле, могли синтезироваться практически все основные классы биомономеров, Предполагаемая схема процессов, протекавших в условиях добиэлогической химической эволюции, представлена на фиг. 41. [c.189]

    Посмотрим теперь, какие источники энергии могут быть использованы в ходе эволюции. Оценим сначала количество энергии, требуемой для обеспечения указанных выше нужд. Например, процесс синтеза пептидной связи относится к эндэргоническим реакциям — для синтеза 1 моля пептидных связей необходимо затратить 3—4 ккал свободной энергии. По-видимому, когда-нибудь удастся из общих соображений оценить и желательную величину сверхравновесного синтеза. Допустим, что сверхравно-весная концентрация продукта в Ю —10 раз превышает величину, определяемую термодинамическими соотношениями. В соответствии с известными термодинамическими формулами на это потребуется еще 7—8 ккал1моль  [c.104]

    Гемоглобин — одна из ныне существующих молекул, использованная мной для иллюстрации принципа, согласно которому атомы обычно образуют стабильные структуры. Здесь важно указать, что до возникновения жизни на Земле, возможно, происходила какая-то рудиментарная эволюция молекул с помощью обычных физических и химических процессов. Нет нужды придумывать какую-то предначертанность, цель или направленность. Если группа атомов в присутствии источника энергии образует некую стабильную структуру, то она имеет тенденцию сохранять эту структуру. Самая ранняя форма естественного отбора состояла просто в отборе стабильных форм и отбрасывании нестабильных. В этом нет ничего таинственного. Это должно было произойти по определению. [c.18]

    Если принять эти условия за исходные, то дальнейшая эволюция Земли (обособление мантии, ядра, коры, гидросферы и атмосферы) должна была полностью определяться исходным составом земного вещества, начальным теплозапасом нашей планеты и историей ее взаимодействия с Луной. При этом очевидно, что эндогенные источники энергии, фактически управляющие всем ходом глобального (и тектонического) развития Земли, включая энергию распада радиоактивных элементов и гравитационную дифференциацию земного вещества, в конце концов тоже определяются исходным составом Земли. Результаты расчета состава Земли приведены в табл. 8.1 в сопоставлении с составами современной мантии и углистых хонд-ритов - наименее дифференцированных метеоритов, обычно принимаемых за эталон среднего состава протопланетного вещества. [c.247]

    В вычислительных системах, основанных на использовании молекулярных систем и их ансамблей, находящихся в стационарных, далеких от равновесия состояниях, которые могут существовать только за счет обмена энергией (массой) с окружающей средой, возникают и распространяются автоволны (волны возбуждения в активных средах), сохраняющие свои характеристики постоянными за счет распределенного в среде источника энергии. Автоволновые процессы описываются математическим аппаратом, использующимся для анализа сугубо нелинейных задач, к которому сводится целый ряд практически важных проблем — образование кристаллических структур, кинетика химических и биотехнологических процессов, биологический морфогенез, эволюция биологических популяций и т. д. При исследовании этого класса задач на традиционных ЭВМ приходится прибегать к настолько трудоемким численным методам, что пока нельзя надеяться на возможность решения реальных задач, встречающихся на практике, даже с учетом перспективного роста быстродействия современных цифровых ЭВМ. Физической реализацией био-вычислительного устройства являются квазидвумерные кристаллизованные пленки белков и ферментов, которые в определенных условиях ведут себя как актив- [c.43]

    Предлагаемая читателям книга румынских ученых К. Симионеску и Ф. Денеша посвящена химическим аспектам возникновения предбиологических структур. Авторы, опирающиеся на концепцию академика А. И. Опарина, стоят на четких материалистических позициях, рассматривая жизнь как форму существования материи, закономерно возникающую при определенных условиях в процессе химической эволюции. Сущность их теории, названной низкотемпературной , заключается как раз в выявлении тех условий, в которых могла возникнуть жизнь. Согласно их модели, основным источником энергии, инициировавшим первоначальные химические процессы, была холодная плазма, вызывавшая образование активных частиц — радикалов в газовой фазе при низком атмосферном давлении. Рекомбинация активных частиц на матрицах (например, апатитах) привела к образованию макромолекулярных соединений и далее к протобиополимерам, выживанию которых способствовало наличие на планете обширных поверхностей с низкой температурой (например, замерзшего первичного океана). Основными компонентами первичной атмосферы были, по мнению авторов, аммиак, метан и вода. [c.5]

    Переход от анаэробного существования к аэробному-важнейший этап эволюции, ибо он открыл богатейшие источники энергии. В присутствии кислорода из глюкозы можно получить в 18 раз больше энергии, чем в его отсутствие. В ходе эволюции у позвоночных выработались два основных механизма, обеспечивающих снабжение клеток постоянным и достаточным количеством кислорода. Первый - это система кровообращения, которая активно поставляет клеткам кислород. Если бы не было системы кровообращения, то размеры аэробных организмов не превышали бы миллиметра, поскольку диффузия кислорода на большие расстояния оказалась бы слишком медленной и отставала бы от потребностей клеток Второе важнейшее приспособление для снабжения клеток кислородом - это по= явление в процессе эволюции специальных молекул-переносчиков кислорода, позволив шее преодолеть ограничения, накладываемые низкой растворимостью кислорода в воде. У позвоночных переносчиками кислорода служат белки гемоглобин и миогло-бин. Гемоглобин, содержащийся в эритроцитах, выполняет функцию переносчика кислорода кровью. Наличие гемоглобина резко увеличивает способность крови переносить кислород - с 5 до 250 мл в расчете на один литр крови. Гемоглобин играет также жизненно важную роль в транспорте углекислого газа и ионов водорода. Миоглобин, находящийся в мышцах, выполняет функцию резервного источника кислорода и облегчает гранспорт кислорода в мышцах. [c.48]


Смотреть страницы где упоминается термин Эволюция источники энергии: [c.390]    [c.273]    [c.130]    [c.169]    [c.93]    [c.93]    [c.99]    [c.140]   
Биохимия Том 3 (1980) -- [ c.345 ]




ПОИСК







© 2025 chem21.info Реклама на сайте