Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения энергии поступательного движения в поступательную и во внутреннюю энергию

    Качественное рассмотрение вопроса об эффективности обмена R—Т дает адиабатический принцип, согласно которому процесс является адиабатическим, т. е. протекающим без изменения квантовых состояний сталкивающихся частиц (упругие столкновения), если скорость изменения возмущающего действия соударения ничтожно мала по сравнению со скоростью того периодического движения, которое отвечает внутренним степеням свободы. Выражая эти скорости соответственно величинами 1/т (т — продолжительность соударения) и о) (о — угловая частота периодического движения), условие малой вероятности превращения энергии поступательного движения во внутреннюю энергию (А.Ё = Йсо) на основании адиабатического принципа выразим следуюш,им неравенством 1/т (см., например, [237]) или [c.160]


    Вопрос о превращениях энергии поступательного движения во внутреннюю энергию (и обратно) при соударениях молекул при помощи методов квантовой механики был рассмотрен рядом авторов. Главная трудность теоретического рассмотрения этого вопроса — это отсутствие точного и вместе с тем достаточно простого выражения для потенциальной энергии взаимодействия сталкивающихся частиц. Поэтому приходится пользоваться различными более или менее грубыми приближениями. [c.300]

    Превращения энергии поступательного движения в поступательную и во внутреннюю энергию. Рассмотрим сначала превращение поступательной энергии в поступательную. Передача энергии поступательного движения при столкновении молекул без изменения формы энергии осуществляется в соответствии с законами соударения упругих шаров. Из этих законов в простейшем случае центрального удара быстро движущейся [c.295]

    Возбуждение атомов и молекул электронным ударом. Функция возбуждения. Роль фотонов, являющихся активирующим фактором в фотохимических реакциях, в реакциях, протекающих в электрическом, разряде, играют быстрые электроны и в значительно меньшей степени — ионы. Активирующая роль быстрых электронов состоит в том, что при соударении электрона с молекулой в результате превращения энергии поступательного движения электрона возникает возбужденная молекула, молекулярный ион или происходит диссоциация молекулы на нейтральные или ионизованные осколки (атомы, радикалы, ионы). Во всех случаях (за исключением процессов, приводящих к образованию отрицательных ионов, см. ниже) речь идет о превращениях кинетической энергии электрона во внутреннюю энергию молекулы. При этом, согласно теории соударения упругих шаров (см. стр. 298), для передачи молекуле энергии Е при центральном ударе достаточно, чтобы энергия электрона К была не меньше Е К>Е). Вероятность передачи энергии, т. е. вероятность активации электронным ударом, обычно характеризующаяся величиной соответствующего эффективного сечения, зависит от энергии электрона, являясь функцией К (функция возбуждения или функция ионизации), а также функцией строения молекулы. [c.395]

    Элементарный химический акт — непрерывный процесс взаимо-перехода энергии поступательного движения молекул во внутреннюю энергию движения ядер и электронов, а также во вращательную энергию системы. Ядра атомов в процессе превращения реагентов в продукты реакции движутся непрерывно, непрерывно меняется их расположение, при этом относительно быстро меняется и распределение электронной плотности в реагирующей системе. Образуются новые частицы молекулы, радикалы, ионы. Состояние реагирующей системы (молекулы А и В в момент столкновения), при котором изменение в расположении ядер в реагирующей системе приводит к разрыву отдельных связей и возникновению новых, называют переходным состоянием. Всякий элементарный химический акт протекает через переходное состояние. [c.559]


    Теория столкновения использует результаты, полученные в кинетической теории газов. В наиболее простом варианте газ рассматривается как совокупность сферических частиц конечных размеров. До столкновения они не взаимодействуют друг с другом. При столкновении же возможны два качественно различных результата либо частицы не меняют химического строения, либо это происходит и возникают новые частицы. В момент столкновения, длящийся 10- —10- с, кинетическая энергия поступательного движения частиц переходит в энергию внутренних видов движения (колебательную, вращательную и т. д.). Если накопленная в момент соударения энергия используется на преодоление энергетического (потенциального) барьера реакции, то результатом такого неупругого столкновения будет химическое превращение. Это — так называемое реакционное столкновение. [c.725]

    Превращение одной формы движения в другую всегда осуществляется в строго эквивалентных соотношениях. Эквивалентность взаимопревращений различных видов энергии доказана всем многовековым опытом человечества и поэтому является естественным законом, известным как закон сохранения энергии. Это означает, что если к системе или совокупности веществ подвести некоторое количество теплоты Q, то в общем случае она может расходоваться на 1) изменение внутренней энергии системы АУ (изменение интенсивности поступательного, вращательного и колебательного движений внутри молекул и кристаллов 2) совершение работы А против сил, действующих извне на данную систему (внешнее давление, поверхностное натяжение и т. д.). [c.40]

    Найденные для данного примера численные значения величин АЕ и н имеют следующий смысл. Работа н , равная 41 кал, представляет собой энергию, которую необходимо затратить на перемещение поршня (см, рис. 17.3), действуя против внешнего давления 1 атм. Эта величина показывает, какая работа должна быть выполнена, чтобы отодвинуть внешнюю атмосферу и дать место объему образующегося пара (1,700 л), возникающего в рассматриваемом превращении. Интерпретация величины АЕ требует, чтобы мы несколько отвлеклись от обычных представлений термодинамики, которые ограничены статистическим подходом и не учитывают поведения молекул. В рассматриваемом примере АЕ = 499 кал. Это показывает, что большая часть тепловой энергии, необходимой для превращения 1 г воды из жидкости в пар, расходуется на повышение внутренней энергии. Молекулы пара, как известно, располагаются приблизительно в 10 раз дальше друг от друга, чем молекулы жидкости, и, очевидно, для преодоления сил межмолекулярного взаимодействия в жидкости необходима большая энергия (см. разд. 11.1). Таким образом, под внутренней энергией обычно понимают потенциальную энергию молекул вещества (энергию, связанную с положением молекул или структурой вещества), а также кинетическую энергию, связанную с поступательным, колебательным и вращательным движением молекул. [c.307]

    При реакции 0 + N0->N02 энергия трех поступательных степеней свободы ( 2 RT) и двух вращательных степеней свободы (RT) переходит на внутренние степени свободы NO2. Точнее, на внутренние степени свободы благодаря сохранению момента количества движения переходит не вся вращательная энергия N0, а ее значительная часть, равная 1тЛ1т +Iab(no,)) UEromo) B этом выражении /no — момент инерции N0, а /лв(ыо2) — произведение двух больших проекций момента инерции NO2. Далее, не вся энергия поступательного движения 3/2 RT переходит на колебательные степени свободы, а только RT. Остаток снова из-за действия правила сохранения момента количества движения переходит во вращательную энергию. Итак, на внутренние степени свободы активной частицы NO2 переходит V4 RT -f RT = 1,75 RT, что составляет 3,5 ккал1моль при 1000° К. Далее не вся энергия 72 ккал/моль, выделяемая при образовании новой связи, оказывается на внутренних степенях свободы. Из-за сильного изменения (в 4 раза) момента инерции при превращении переходного в основное состояние возрастает вращательная энергия, которая в переходном состоянии равнялась V2 RT, а в основном состоянии будет равна 4-V2 RT = 4 ккал/моль (при 1000°К). Таким образом, разница энергии 2RT — — /2RT = 3 ккал/моль идет на закручивание молекулы. [c.165]


Смотреть страницы где упоминается термин Превращения энергии поступательного движения в поступательную и во внутреннюю энергию: [c.123]   
Смотреть главы в:

Кинетика химических газовых реакций -> Превращения энергии поступательного движения в поступательную и во внутреннюю энергию




ПОИСК





Смотрите так же термины и статьи:

Движение поступательное

Энергия внутренняя

Энергия движением

Энергия поступательная

Энергия поступательного движения



© 2025 chem21.info Реклама на сайте