Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия поступательная

    В газах с двухатомными молекулами, наряду с изменением энергии поступательного движения молекул, может происходить и изменение энергии вращательного движения их, а также колебательного движения содержащихся в них атомов и атомных групп. [c.104]

    В формуле 1 Т= 1з Ыти Р, — газовая постоянная Т — температура N — число Авогадро т — масса молекуль и — скорость движения молекул газа. Проанализируйте эту формулу. Как зависит скорость молекул от молекулярной массы и температуры Пользуясь формулой, выведите соотношение, позволяющее судить об изменении скорости молекул при повышении температуры на некоторое число градусов. Во сколько раз возрастает скорость молекул газа при увеличении температуры в 2 раза Как изменится скорость молекул газа при увеличении температуры на 10° Как изменится скорость молекул газа при увеличении температуры на 100° Введите в формулу кинетическую энергию поступательного движения одной молекулы е = — и получите формулу для энергии 1 моль молекул [c.138]


    При поглощении теплоты многоатомными газами возрастание внутренней энергии молекул происходит не только за счет увеличения кинетической энергии поступательного их движения, но и вследствие увеличения энергии вращательных движений всей молекулы и внутримолекулярных вращательных и колебательных движений. [c.12]

    Изменение внутренней энергии системы представляет собой изменение а) кинетической энергии поступательного и вращательного движения молекул, б) сил притяжения и отталкивания между молекулами, в) внутримолекулярной вибрации и вращения отдельных атомов и электронов в молекуле и т. п. В случае идеальных газовых систем, при чисто физических процессах, изменение внутренней энергии состоит лишь в изменении кинетической энергии молекулярного движения, т. е. в изменении температуры газа. [c.67]

    В газовой фазе переход молекулы в возбужденное состояние и образование свободных радикалов из возбужденных молекул является следствием протекающих в смеси процессов обмена кинетической энергии поступательного движения молекул. При [c.29]

    Найдено, что когда энергия вращения существенна [4], то значение а падает примерно до 1,8 (вследствие того что перенос энергии поступательного и вращательного движения не так эффективен, как перенос одной энергии поступательного движения). [c.164]

    При этом выбирается та степень свободы, для которой полная энергия может быть записана как сумма двух квадратичных членов. Таким образом, колебательная энергия простого одномерного гармонического осциллятора представляется одной классической степенью свободы (два квадратичных члена), в то время как энергия поступательного движения имеет три составляющие (три квадратичных члена) и, следовательно, 3/2 классической степени свободы. [c.243]

    Важная характеристика пламени — его температура. Температура является параметром, характеризующим систему, находящуюся в термодинамическом равновесии. Пламена не относятся к такого рода системам. Экспериментальные методы измерения температуры (методы зондовой и радиационной пирометрии) позволяют получить усредненное значение температуры, характеризующей главным образом энергию поступательного движения частиц в пламени. Методом обращения линии натрия в окрашенных пламенах были получены значения температур для смесей воздуха с топливами прр 0,1 МПа (влажные смеси, комнатная температура) [147]. Отмечается следующая закономерность в понижении расчетной температу- [c.116]


    Задача вычисления значений энергии, теплоемкостей, энтропии и т. д. сводится по существу к вычислению суммы по состояниям. Экспонент в выражении для Q включает в себя сумму по всем видам молекулярной энергии — поступательной, электронной, колебательной и вращательной. Принимая, что каждая их этих форм энергии не зависит от других, полную сумму по состояниям можно представить в виде произведения сумм по состояниям соответствующих энергий каждого типа [c.308]

    Общий запас энергии молекулы представляет собой су му энергий поступательного, вращательного, колебательного движений и перемещения электронов. Таким образом [c.42]

    Закономерности свободного статического испарения жидкости с поверхности в условиях термодинамического равновесия и отсутствия внешнего силового поля впервые были получены акад. В. В. Шулейкиным. Молекулы могут покинуть поверхность испаряющейся жидкости при условии, когда кинетическая энергия поступательного движения молекул газа больше величины работы отрыва А молекулы с поверхности жидкости [c.100]

    Так как масса электрона очень мала, он не может при соударении с молекулой передать ей свою кинетическую энергию и повысить ее вращательную или колебательную энергию. Для перехода кинетической энергии поступательного движения электрона в колебательную энергию молекулы наиболее выгоден удар вдоль оси молекулы. Но вследствие невыгодного соотношения масс даже при таком ударе молекуле может быть передана, как уже было показано выше, лишь небольшая доля кинетической энергии электрона. Несмотря на это, при некоторых обстоятельствах переход кинетической энергии поступательного движения электрона в колебательную энергию молекулы, с которой он сталкивается, оказывается возможным. Электрон своим электрическим полем может так изменить внутреннее поле молекулы, что произойдет изменение ее колебательного состояния. Опыт показал, что электроны, обладающие энергией 5 эв, возбуждают колебательные кванты молекул азота и окиси углерода. причем вращательное движение молекул не изменяется. [c.73]

    Переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или [c.74]

    Исходя из классических представлений, переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или молекулы можно рассматривать как неупругий удар. Удар, при котором энергия поступательного движения будет переходить во внутреннюю энергию, является неупругим. При неупругом ударе деформация соударяющихся тел увеличивается до тех пор, пока скорости их не станут одинаковыми (т. е. Ц1 = и2 = и), после чего шары перестанут давить друг на друга и будут двигаться вместе. [c.74]

    Стабильная молекула может образоваться в результате столкновения двух атомов или радикалов только в том случае, если некоторое количество энергии, не меньшее, чем суммарная кинетическая энергия сталкивающихся частиц, теряется в результате излучения или при столкновении с третьей частицей (роль которой может играть и поверхность твердого тела). Если потери энергии не будет, то молекула, возникшая в результате столкновения, после одного колебания разрушится, так как выделяющаяся при образовании связи энергия останется в возникшей молекуле, а ее достаточно, чтобы разорвать возникшую связь. Кроме того, возникающая молекула будет обладать и кинетической энергией сталкивающихся частиц, которая после разрыва связи вновь перейдет в кинетическую энергию поступательного движения образовавшихся осколков (атомов или радикалов). [c.85]

    При выводе экспоненциального закона Больцмана в виде уравнений (HI, 15), (111,25) или (П1, 16) не учитывалось положение молекул в пространстве и никак не оговаривался характер энергии е, которой может обладать молекула. Поэтому полученные уравнения можно использовать для характеристики распределения общей энергии и любого вида энергии, будь то энергия поступательного или вращательного движения, энергия колебаний и т. д., при том, однако, условии, что суммарная энергия рассматриваемой системы постоянна. Далее, не учитывалась возможность пребывания молекулы на промежуточных энергетических уровнях (между еь ег. . . е,). С другой стороны, никак не оговаривалось взаимное расположение уровней еь еа. .. е,, поэтому, полагая, что они расположены бесконечно близко друг от друга, можем считать найденное распределение непрерывным. В этом параграфе рассмотрено применение закона Больцмана к системам, в которых энергия молекул изменяется непрерывно от нуля до бесконечно большого значения. [c.94]

    Внутренняя энергия многоатомного газа. Внутренняя энергия многоатомного газа вычисляется по уравнению (1,88). Обычно расчет производят отдельно для каждой составляющей внутренней энергии. Поступательная составляющая внутренней энергии многоатомного газа не отличается от поступательной составляющей внутренней энергии двухатомного газа [см. уравнение (1,90)1. Вращательная составляющая внутренней энергии рассчитывается по уравнению (1,88), подставляя в него зависимость 1п Z p == / (Т) из (1,104)  [c.27]


    Левая часть равенства — изменение кинетической энергии поступательного движения порции флюида массой т от положе-ния к до положения н Для машины периодического действия это изменение рассматривается за один период времени. [c.7]

    Обозначая среднюю кинетическую энергию поступательного дви- [c.98]

    Средняя энергия поступательного движения одной молекулы идеального газа определяется уравнением (III, 16). Очевидно, что соответствующая энергия одного моля (Л а молекул) будет  [c.103]

    Выше мы пришли к выводу, что энергия поступательного дви-жения молекул одного моля газа равна Е = RT — ур. (П1, 19), и, следовательно, изохорная теплоемкость газов, молекулы кото- [c.105]

    Кинетическая теория газов показывает, что такие понятия, как температура и давление, играющие основную роль в термодинамике, обладают по существу статистической природой, т. е. являются выражением некоторых свойств вещества, обусловленных совместным действием очень большого числа частиц. Температура определяется средней кинетической энергией поступательного движения, хотя кинетическая энергия отдельных частиц может значительно отличаться от этой величины. Точно так же давление газа выражает суммарный эффект ударов молекул о стенку сосуда и является величиной, средней для большого числа молекул, которые обладают в момент удара самыми различными количествами движения и ударяются о стенку под самыми различными углами. Статистической природой обладают и такие величины, как плотность. [c.210]

    При повышении температуры идеального газа теплота расходуется только на увеличение кинетической энергии поступательного и вращательного движения его молекул и на усиление колебательного движения атомов, составляющих молекулы, и внутреннего вращения ( 35). Все эти формы движения не зависят от давления газа, и при данной температуре энергия их постоянна. Поэтому не зависит от давления и теплоемкость каждого данного газа. Отсюда следует, что и внутренняя энергия идеального газа не изменяется с изменением давления, [c.231]

    При нагреве газа возрастает энергия поступательного и вращательного перемещения атомов. Изменение электронного состояния атомов не происходит при обычных температурах и эта составляющая энергии не входит в теплоемкость газа. Численное значение теплоемкости идеального газа можно рассчитать на основе кинетической теории газов. Эта теория основана на следующих допущениях частицы в пространстве непрерывно перемещаются с любыми скоростями (теоретически) они представляют собою материальные точки, которые не притягиваются [c.24]

    Второй причиной, приводящей к нарушению равновесного распределения энергии в ходе химической реакции, является выделение энергии, распределяющейся между молекулами продуктов реакции. Эта причина наиболее существенное значение имеет в случае экзотермических процессов. Суммарное количество выделяющейся энергии равно энергии активации данного элементарного (экзотермического) процесса плюс теплота реакции Еп -Ь Q. Выделяющаяся энергия превращается в энергию поступательного движения пост и внутреннюю энергию продуктов реакции. [c.38]

    Этот метод применим при измерении скорости перехода колебательной или вращательной энергии в энергию поступательного движения. См. разд. VII.11. Метод был впервые предложен Эйнштейном и применен к кинетической системе N204 N02 Ричардсоном. Более подробно см. [14  [c.64]

    В зависимости от расстояния г между двумя атомами. Эта энергия иъ нн-мальна (—Ео) при равновесном расстоянии г о, максимальна ( j) при расстоянии нестабильности г. и имеет другой минимум (—Ег) при расстоянии Г2- Соответственно сила действующая между двумя атомами, которая определяется соотношением i = —dE/dr, положительна (отталкивание) для г < Го, отрицательна (притяжение), когда г находится между Го и г,, снова положительна между г, и T a и равна нулю при го, игз. Если молекула АВ находится в энергетическом состоянии, соответствующем на приведенном графике, то ей нужно сообщить критическую энергию (энергию активаций) = Ej — Ео, прежде чем она сможет диссоциировать на А и В. Если это происходит, то атомы отдаляются друг от друга, и будучи отдалены они обладают только энергией поступательного движения (Et). . Ни одна молекула с внутренней энергией меньше, чем Е, не может диссоциировать, в то время как все молекулы с энергией больше Е должны диссоциировать по одной связи, если эта энергия не будет потеряна. Молекулы, имеющие энергию больше Е, будут в дальнейшем называться молекулами с критическим содержанием энергии или активированными (возбунеденными) комплексами. Возбужденные комплексы, имеющие расстояние между ядрами равное относятся к так называемым переходным комплексам. [c.195]

    Избыток энергии возбужденных частиц идет на уиеличение энергии алектронов и энергии поступательного движения самих частиц, если частицы являются атомами. В остальных случаях, кроме того, увеличивается вращательная и колебательная энергия частиц. Во всех этих случаях существуют ограничения видов энергии и возможностей ее распределения между двумя продуктами реакции. Ограничения заключаются в следующем 1) сохраняется количество движения образующихся фрагментов, что определяет распределение энергии ностуиатбльного движения (обратно пропорционально массам), 2) сохраняется общий момент количества движения, а также его компоненты вдоль некоторых фиксированных осей , 3) сохраняется общий электронный момент количества движения и, наконец, 4) сохраняется электронный спин, хотя это последнее правило маловероятно для некоторых частиц, содержащих атомы с атомным номером выше 10. [c.342]

    Таким образом, если энергии поступательного движения двух продуктов равны Е = руЪпу и Е2= рУ 1т2, то тогда Е Е2= т2гпу, так как ру= — Р2 (сохранение количества движения). [c.342]

    Энергию молекулы, распределенную по различным степеням свободы, можно разделить (условно) на две части, непосредственно не связанные между собЬй энергию поступательного движения и (так называемую) внутримолекулярную. Внутримолекулярная энергия складывается из  [c.183]

    Эгот объем шарового слоя, выраженный через число ячеек А, равен числу точек, отвечающих сочетаниям целочисленных положительных значений Лу, Ку и К , т. е. чис 1у микрососгояний молекулы, энергия поступательного движения которой в объеме V заключена в пределах между и е+1 . Выражение (X, 27) дает объем шестимерного фазового пространства для молекулы, так как три измерения—координаты положения точек—учтены множителем V. [c.335]

    Для идеального газа силы взаимного притяжения между моле-1<улами равны нулю, да и для реальных газов в обычных условиях они очень малы. Поэтому можно считать, что вся теплота расходуется на увеличение энергии самих молекул, т, е. на увеличение энергии поступательного и вращательного движения молекулы в целом и колебательного движения содержащихся в ней атомов и атомных групп. (При очень высоких температурах к этому присоединяется и переход электронов на более высокие энергетические уровни и даже отрыв их от атома, но, ограничиваясь здесь областью обычных температур, мы можем этот расход теилоты не принимать во внимание.) [c.103]

    Внутренняя энергия вещества складывается из энергии поступательного i/nooT. вращательного внутреннего движения и энергии молекулярного взаимодействия [c.94]

    Решение. Внутреннюю энергию поступательного движения оп- )еделяем по уравнению (VIII.37)  [c.102]

    Здесь нас будут интересовать лишь такие газы, термическое равновесие которых целиком определяется распределением энергии между различными степенями свободы неизменных по своему составу молекул. Так как опыт и теория показывают, что обмен энергии поступательного движения между молекулами происходит в результате немногих газокинетических соударений, а превращение враш.ательной энергии в поступательную (и обратно) за немногими исключениями (например, Hj) также осуществляется в результате сравнительно небольшого числа столкновений, то длительно сохраняющиеся неравновесные состояния рассматриваемых газов могут быть связаны лишь с задержками в оомопе колебательной энергии молекул, т. е. с затрудненностью превращопия колебательной энергии в поступательную и вращатель-и5 ю (и обратно). [c.77]


Смотреть страницы где упоминается термин Энергия поступательная: [c.181]    [c.343]    [c.343]    [c.99]    [c.195]    [c.7]    [c.172]    [c.172]    [c.98]    [c.182]    [c.479]    [c.28]    [c.94]    [c.114]    [c.21]   
Физическая химия (1978) -- [ c.262 ]

Химия коллоидных и аморфных веществ (1948) -- [ c.11 , c.13 , c.24 ]

Физическая химия Том 1 Издание 5 (1944) -- [ c.255 ]

Теплоты реакций и прочность связей (1964) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетическая энергия поступательного движения молекул газов

Кинетическая энергия поступательного движения молекул, средняя

Кинетическая энергия поступательного движения электрона

Колебательно-поступательный обмен энергией

Молекула кинетическая энергия поступательного движения

Обмен поступательной и вращательной энергии

Обмен поступательной и вращательной энергии (обмен К — Т)

Обмен поступательной и колебательной энергии (Г-процессы)

Обмен поступательной и колебательной энергии (обмен

Обмен энергии при соударениях молекул Превращения поступательной и вращательной энергии

Переход кинетической энергии поступательного движения в энергию электронного возбуждения

Поступательная энергия в квантовой

Поступательная энергия в квантовой механике

Превращение колебательной и вращательной энергии в поступательную

Превращение поступательной энергии в колебательную и обратно

Превращение поступательной энергии в поступательную (ТГ-процесс)

Превращение поступательной энергии в поступательную (обмен Т — Т)

Превращения поступательной и вращательной энергии

Превращения энергии поступательного движения в поступательную и во внутреннюю энергию

Распределение каноническое поступательной энергии

Распределение поступательной энергии

Составляющие энергии и энтропии, зависящие от поступательного движения молекул

Термодинамические функции для энергии поступательного движения

Электронно-поступательный и электронно-колебательный обмены энергией при ЛЕ 1 эВ

Энергия активации поступательная

Энергия внутримолекулярная поступательного движения

Энергия обусловленная поступательным

Энергия поступательного движения

Энергия поступательного движения атомов

Энергия поступательного движения молекул

Энергия тела, движущегося поступательно

Энергия электронная, превращение в поступательную



© 2025 chem21.info Реклама на сайте