Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катодные установки подземных сооружений

    Глава 8. КАТОДНЫЕ УСТАНОВКИ ПОДЗЕМНЫХ СООРУЖЕНИИ [c.179]

    Применение катодной защиты подземных сооружений почти полностью устраняет коррозионное разрушение. При относительно небольших затратах (стоимость устройств катодной защиты не превышает 1 % от стоимости трубопровода) удается значительно продлить срок службы подземных трубопроводов. В нашей стране средства катодной защиты впервые были внедрены на нефтепроводе Баку— Батуми, где применялись катодные установки с внешним источником тока. Затем катодная защита была осуществлена на газопроводах Саратов — Москва, Дашава — Киев и нефтепроводе Гурьев — Орск. [c.4]


    Расчеты катодной защиты подземного сооружения выполняются для определения мощности катодных установок и рационального размещения их вдоль трассы подземного сооружения. Место установки станции катодной защиты (СКЗ) выбирается исходя из ряда факторов наличия источников электроэнергии, удобства обслуживания и, главным образом, распределения потенциалов (плотности тока) вдоль сооружения. Зная закономерности распределения потенциалов и величину минимально необходимого смещения потенциала (или величину защитного потенциала), можно оценить зону защитного действия при заданном режиме. Варьируя величинами силы тока СКЗ, можно подобрать такой шаг расстановки защитных устройств, который отвечает получению максимального экономического эффекта. Соответственно величину тока следует признать основной харак- [c.192]

    Катодная защита. Катодная защита заключается в катодной поляризации защищаемой металлической поверхности и придании ей отрицательного потенциала относительно окружающей среды при помощи источника постоянного тока. Защищаемое сооружение играет роль анода. Отрицательный полюс источника тока присоединяется к газопроводу, а положительный — к заземлению (аноду). При этом постепенно разрушается анодное заземление, защищая газопровод. Установка катодной защиты состоит из катодной станции (преобразователя— источника постоянного тока), анодного заземления, защитного заземления и соединительных кабелей. Установка автоматической катодной защиты, кроме того, включает неполяризующийся электрод сравнения длительного действия, датчики электрохимического потенциала. Основными параметрами установок катодной защиты являются сила защитного тока и протяженность защитной зоны. Катодную защиту подземных сооружений от коррозии применяют в тех [c.129]

    Источниками блуждающих токов могут быть линии электропередачи системы провод—земля, электролизеры и гальванические ванны, катодные установки, работающие сварочные агрегаты, заземления постоянного тока и т. п. Среднесуточная плотность токов утечки, превышающая 0,15 мА/дм , считается опасной. Б таких зонах подземные металлические сооружения нуждаются в специальных методах защиты от коррозии блуждающими токами. [c.390]


    Совместная катодная защита от почвенной коррозии (защита нескольких подземных металлических трубопроводов общими катодными установками) надежна и рациональна, она исключает вредное влияние катодных установок одного трубопровода на другой. Схема атого способа защиты проста и требует меньшего числа катодных установок, чем при раздельной защите каждого из сооружений в отдельности. [c.177]

    Электрохимическая защита обсадных колонн скважин, подключенных к групповому газо- или нефтесборному пункту, обеспечивается одной (кустовой) катодной установкой. Током этой установки достигается катодная поляризация таких подземных металлических сооружений куста, как коммуникации куста (подземное оборудование низкотемпературной сепарации, резервуары и другие), шлейфы, водопровод и обсадные колонны скважин. [c.192]

    К этому методу можно отнести мероприятия по борьбе с блуждающими токами, которые осуществляются по двум основным направлениям предупреждение или уменьшение возможности возникновения блуждающих токов на самом источнике тока и проведение специальных работ на защищаемом подземном сооружении по отводу блуждающих токов. Мероприятия первого направления - обязательная, но только начальная мера. Независимо от этого вида работ обязательно производится защита самих подземных сооружений использование изолирующих современных покрытий, устройство электрических экранов, установка изолирующих фланцев (соединений) на трубопроводах, укладка трубопроводов в подземных коллекторах и каналах, электродренажная защита, катодная поляризация и др.  [c.16]

    Источниками блуждающих токов служат линии электрифицированных железных дорог, трамваев, метрополитена, линии передачи постоянного тока, работающие по системе провод - земля , установки катодной защиты подземных металлических сооружений. Устройство электроснабжения электрифицированных железных дорог, трамваев и метрополитена принципиально одинаково, поэтому и процессы возникновения в земле блуждающих токов от этих источников одинаковые (рис. 3.10). Положительный полюс источника питания подключается к контактному проводу, а отрицательный - к рельсам. При такой схеме электроснабжения тяговый ток от положительной шины тяговой подстанции по питающим фидерам (линиям) поступает через контактную сеть и токоприемник к двигателю электровоза, а затем через колеса и рельсы к отрицательной шине тяговой подстанции. Так как рельсы не полностью изолированы от земли, часть тягового тока стекает с них в землю. Сила стекающего тока, который и является блуждающим, тем больше, чем меньше переходное сопротивление между рельсами и землей и чем выше продольное сопротивление рельсов. При условиях, способствующих утечке тока в землю (отсутствие стыковых соединений на рельсах, загрязненность балласта и т.д.), сила блуждающего тока в земле может достигать 70-80 % от общей силы тягового тока, т.е. десятков и сотен ампер. Среднесуточная плотность тока утечки, превышающая 0,0015 мА/м , считается опасной для подземных металлических сооружений. [c.50]

    Из этого следует, что катодная защита большими токами изолированных сооружений в условиях плотной застройки от почвенной коррозии не всегда оправдывает себя и требует глубокого изучения. В этой связи целесообразно применять катодную установку для выполнения одновременно двух функций для защиты подземных сооружений от коррозии и ликвидации сырости подвальных помещений, фундаментов зданий (магазины, склады, мастерские, овощехранилища, гаражи и т. п.). Для этого, например, достаточно возле здания или на его дне во время строительства установить горизонтальный или вертикальный анодный заземлитель из малорастворимого материала. [c.34]

    В настоящее время важной народнохозяйственной задачей является разработка рекомендации по использованию катодной установки для одновременной защиты подземных сооружений от коррозии и электроосмотической осушки ответственных строительных объектов. [c.34]

    Установлено, что ежегодный рост количества и мощности катодных станций вызван не агрессивностью грунтов, а действием блуждающих токов развивающегося рельсового транспорта (трамвая). Катодные установки, в свою очередь, наводят огромные блуждающие токи на близлежащие сооружения, на которых также появляются опасные коррозионные участки. Таким образом, создается ситуация, при которой все подземные сооружения города требуют защиты либо от почвенной коррозии, либо от блуждающих токов. На защиту такой системы коммуникаций (цепочки) расходуется огромное количество металла, электроэнергии и других средств. [c.60]

    При работе систем катодной защиты через землю течет постоянный ток, стекающий с анодных заземлителей и натекающий на объект с катодной защитой. Поэтому такие системы согласно D1N 57150 и VDE 0150 являются установками постоянного тока, представляющие собой источники блуждающих токов, которые могут вызвать коррозионные явления на других подземных металлических сооружениях например на трубопроводах и кабелях [12]. Защитный ток создает воронку напряжений в области анодных заземлителей. При этом потенциал грунта получается более высоким по отношению к потенциалу далекой земли. Над дефектами изоляции трубопровода защитный ток создает катодные воронки напряжений. Здесь потенциал грунта снижается по отношению к потенциалу далекой земли. На другие металлические подземные сооружения, находящиеся в области анодных заземлителей, тоже натекают токи, уходящие в отрицательные участки катодных воронок напряжения таким образом, эти сооружения приобретают в первом случае катодную поляризацию, а во втором — анодную (см. рис. 10.1). В местах стекания (выхода) тока происходит анодная коррозия. [c.237]


    При проведении опытной катодной защиты преследуется цель правильно выбрать место расположения анодного заземления (или нескольких анодных заземлений) и точки дренажа (или нескольких точек) для одной установки. Опытное анодное заземление по согласованию с организациями, эксплуатирующими подземное сооружение, выполняется из стальных электродов диаметром 16—18 мм, длиной 3,5 м, заглубленных в землю на 1,5—3,0 м. Заглубленные электроды соединяются между собой кабелем. [c.88]

    При ОПЫТНОЙ катодной защите путем установки анодного заземления (заземлений) в различных местах и изменения точки дренажа выбирается оптимальный вариант, когда достигается максимальная зона защитного потенциала на подземном сооружении. [c.89]

    При наладке включать станцию катодной защиты можно только при подключенной нагрузке, т. е. при присоединении кабелей к подземному сооружению и анодному заземлению. Нельзя подключать установку под напряжение, не соответствующее положению перемычек на клеммнике переменного тока, и при отключенном защитном заземлении. [c.209]

    Выполнение этого уравнения является обязательным условием для осуществления эффективной катодной защиты. В противном случае установка катодной станции может послужить одной из причин разрушений сооружения. Для наглядности рассмотрим следующий пример. Допустим, изолированный газопровод имеет потенциал выше потенциала анодного заземления (рис. 51). На газопроводе и на анодном заземлении процесс коррозии происходит под действием частных реакций и г. Этот процесс в большинстве случаев достаточно медленный, и разрушение, например, газопроводов происходит в течение 6—12 лет. Если установим катодную станцию (рис. 51,6) и не выполним условие (100), то в цепи потечет ток г, обусловленный разностью потенциалов, который изменит характер частных реакций на поверхности подземных сооружений в худшую сторону. Во всех рассмотренных нами случаях на границе раздела фаз подземное сооружение—грунт образуется потенциал, свидетельствующий о протекании окислительновосстановительной реакции. Ранее было отмечено, что при реакция протекает с преобладанием окислительного процесса, при — с преобладанием восстановительного процесса и, наконец, при / =/д.=/о протекают реакции обмена. [c.91]

    Поляризованные протекторные установки (рис. 25г) представляют собой обычную систему протекторов, присоединяемых к защищаемому подземному сооружению через полупроводниковые вентильные элементы. Поляризованные протекторные установки наиболее рационально использовать для защиты подземных сооружений от влияния блуждающих переменных токов. Они дают возможность через протектор снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них, благодаря наличию в цепи вентильного элемента, катодный полупериод, который обеспечивает их автоматическую катодную защиту. [c.112]

    Работа протекторной установки удовлетворительна, когда сдвиг потенциала в катодную сторону на подземном сооружении при ее работе будет на 0,2 В и более, а сила тока равна или близка к расчетной. [c.255]

    В настоящее время наиболее мощными и распространенными из названных источников блуждающих токов являются линии электрифицированных железных дорог постоянного тока, трамвая и метрополитена, а также установки катодной защиты подземных металлических сооружений. Так как устройство электроснабжения электрифицированных железных дорог, трамвая и метрополитена принципиально одинаково, то и процессы возникновения в земле блуждающих токов от этих источников будут одинаковы. [c.235]

    Первая группа включает в себя комплекс мероприятий, направленных на уменьшение блуждающих токов в земле. К ней относятся меры, применяемые на источниках блуждающих токов и имеющие целью уменьшить утечку тока в землю, а следовательно, и блуждающие токи, попадающие в подземное сооружение. Однако ограничить блуждающий ток в земле можно не на всех его источниках. В частности, на таких источниках, как ЛЭП постоянного тока, работающих по системе провод — земля , и катодных установках ограничить блуждающий ток в земле практически невозможно. Единственное, что можно сделать, — это путем [c.256]

    Целесообразность применения того или иного способа борьбы с коррозией подземных сооружений может быть определена в результате сопоставления данных по длительной эксплуатации защищенных и незащищенных подземных сооружений. Однако в СССР фактически не имеется данных по коррозии незащищенных газопроводов, так как все газопроводы уже в период строительства подвергались защите битумными противокоррозионными покрытиями. Первый магистральный газопровод Саратов — Москва был обеспечен на шестом году эксплуатации электрохимической защитой, а последующие газопроводы Дашава — Киев, Ставрополь— Москва оборудованы установками катодной защиты непосредственно по окончании строительства на первый и второй годы эксплуатации. Это позволило обеспечить безаварийную работу газопроводов в течение длительного срока. [c.206]

    Протекторная защита. Протекторная защита является одной из разновидностей катодной. Необходимый для защиты ток получается за счет работы гальванического элемента, в котором роль катода играет металл защищаемого сооружения, а анодом служит более электроотрицательный металл, чем защищаемый. Электролитом служит почва, окружающая газопровод и протектор. Установка протекторной защиты должна состоять -из анодного протектора (группы протекторов), активатора, соединительных проводов и клеммной коробки (в случае групповой установки протекторов). Протекторную защиту (поляризованные анодные протекторы) применяют для защиты подземных сооружений от коррозии в анодных и знакопеременных зонах, когда блуждающие токи могут быть скомпенсированы током протектора и обеспечивается защитный потенциал в соответствии с требованиями ГОСТ 9.015—74. Важнейшей характеристикой протектора является отношение площади поверхности к его объему. [c.130]

    Блуждающие токи, проникая через такие дефекты в трубопровод, в местах стенания в грунт вызывают электрокоррозию стенок трубы. Поэтому применяют электрическое дренирование, заключающееся в отводе блуждающих токов из подземного сооружения на источники блуждающих токов. В качестве дренажей применяют прямые, поляризованные и усиленные установки, которые подсоединяют к рельсам, путевым дросселям, сборкам отсасывающих линий. В случаях, когда дренажные устройства не обеспечивают защиты сооружения, можно применять дополнительно установки катодной защиты, протекторы, токоотводы и др. [c.44]

    Способы защиты от П. к. кабелей, трубопроводов и др. включают рациональный выбор трассы и метода прокладки, нанесение полимерных, битумных и др. изоляц. покрытий, а также катодную поляризацию (см. Электрохимическая защита). Катодную поляризацию подземных сооружений осуществляют т. о., чтобы создаваемые на всей пов-сти этих сооружений поляризац. потенциалы (по абс. величине) были для стали и алюминия не менее 0,85 В в любой среде, для свинца в кислой среде — 0,5 В, а в щелочной среде — 0,72 В/ (по отношению к медносульфатному электроду сравнения). Установка катодной заидаты состоит из преобразователя (источника пост, тока), анодного заземления и соединит, кабелей. Контакт с сооружением осуществляется непосредств. подключением к нему проводника от отрицат. полюса источника тока, а контакт проводника от положит, полюса с грунтом — через железокремниевые, графитовые или стальные анодные заземлители. Катодную поляризацию пОДйемных сооружений осуществляют также с помощью металлич. протекторов, у к-рых собств. электрохим. потенциал более отрицателен, чем электрохим. потенциал защищаемого сооружения. При этом создается гальва-нич. пара, в к-рой сооружение является катодом, а протек- [c.476]

    Коррозия блуждающими токами связана с работой электрических устройств, использующих в качестве то-копровода землю. В ней появляются электрические токи, величина и направление которых могут изменяться во времени. Эти токи получили название блуждающих. Источниками блуждающих токов являются линии электрифицированных железных дорог, трамваев, метрополитена, линии передачи постоянного тока, работающие по системе провод — земля , установки катодной защиты подземных металлических сооружений. [c.50]

    Поле блуждающих токов создается источниками тока, такими.как линии электропередачи, заземления силовых установок, установки катодной защиты соседних сооружений и объектов, электрифициро- ванные железные дороги, трамвайные пути, электролизные производ-/ства и т.д. Блуждающие токи, попавшие на подземное металлическое [c.60]

    Анодное заземление опытной катодной установки монтируют во влажных грунтах на расстоянии 300-500 м от подземного сооружения. В качестве электродов применяют некондиционные трубы диаметром 25-50 мм и длиной 1,5-2,5 м, которые забивают в землю на глубину 1-1,5 м через 2-3 м друг от друга. В качестве анодного заземления иногда применяют винтовые электроды типа ЭВ-361, представляющие собой металлический стержень диаметром 20 мм и длиной 1850 мм, с одной сторону которого навита по спирали и приварена металлическая лента (шнек) с шагом 40 мм. Длина винтовой части электрода 1000 мм, диаметр 50 мм, масса 8 кг. Сопротивление растеканию тока с винтового электрода в грунтах с удельным сопротивлением 20 Ом-м составляет 8-12 Ом. Применение винтовых электродов позволяет существенно уменьшить сопротивление растеканию гока с анодного заземления и тем самым снизить требуемую мощность источника постоянного тока для катодной поляризации участка подземного сооружения (трубопровода). В качестве анодных заземли-телей опытных катояных станций могут быть также использованы железокремниевые, углеграфитовые, стальные и чугунные электроды, располагаемые во влажном грунте или специальных засыпках. В том случае, когда для поверхностного анодного заземления нет подходящих грунтов или места, применяют глубинные анодные заземлители. [c.69]

    Исходными данными для расчёта и проектирования электрохимической защиты (в то.м числе - катодной) являются совмещенный пла1 прссктирус у1ых и существующих подземных сооружений, а также рельсовых сетей электрифицированного транспорта в масштабе 1 2000 или 1 5000. По проектируемым и рассчитываемым сооружениям, а также по уже существующим должны быть указаны длина и диаметр сооружений по существующим сооружениям - места установки электрохимической защиты по рельсовым сетям- точки подключения отрицательных кабелей и существующих дренажных установок данные о коррозионной активности фунтов и о наличии блуждающих токов, геолого -геофафический разрез для выбора конструкций анодных заземлителей площадь территории. [c.7]

    В практике часто приходится иметь дело с защитой городских протяженных подземных сооружений сложной конфигурации и с сосредоточенными анодными заземлениями. Исследователями [17, 26, 35, 36] неоднократно указывалось, что вывести строгие математические зависимости за- ]11иты в различных, постоянно изменяющихся грунтовых условиях даже для простых ситуаций чрезвычайно сложно. Как правило, зависимости эти громоздки и не находят практического применения. Поэтому при проектировании электрохимической защиты нашло широкое применение непосредственное обследование путем установки временной катодной станции и электрометрических измерений. Техническое осуществление обследования представляет некоторую трудность, потому что в результате необходимо определить, является ли выбранная электрохимическая защита наиболее целесообразной, в то время как степень эффективности защитных мер может быть установлена лишь после пуска катодной станции. [c.34]

    Катодная защита достаточно широко и успешно используется в практике. Система для осуществления катодной защиты состоит иэ собственно защищаемого металлического объекта и анода. В качестве анодов обычно используются вышедшие из употребления стальные балки, рельсы и тому подобный лом. С грицательный полюс источника постоянного тока (обычно выпрямитель) подсоединяется к защищаемому объекту, положительный полюс — к аноду (анодам). Для осуществления катодной защиты выпускаются стационарные установки - катодные станции. Катодная защита используется для предотвращения коррозии подземных сооружений во влажных грунтах, а также для защиты подводных объектов (корпуса морских судов, морские эстакады и портовые сооружения, подземные трубопроводы и др.). [c.114]

    Одной из наиболее существенных причин, вызывающих изменение потенциала незащищенного подземного сооружения, являются блуждающие токи, возникающие из-за наличия разности потенциалов между отдельными точками земной поверхности. Наиболее мощными и распространенными источниками блуждающих токов являются линии электрофицированного транспорта. Поскольку рельсы электротранспорта используют в качестве токопровода, часть тока будет протекать через землю эта часть будет тем больше, чем больше продольное сопротивление рельсов и чем меньше сопротивление перехода рельс— земля. При наличии близкорасположенных подземных сооружений блуждающие токи могут протекать через это сооружение (например, кабель или трубопровод), вызывая появление катодных и анодных зон (т. е. сдвиг потенциала сооружения). Защита от коррозии блуждающими токами может осуществляться как автоматическими катодными станциями, так и электродре-иажными установками (см. раздел ХП1.2). Метод защиты выбирают на основании технико-экономических расчетов. [c.195]

    Меры защнты, орименяемые на источншгах блуждающих токов. Ограничить блуждающий ток в земле можно не на всех источниках. В частности, на таких источниках, как ЛЭП, постоянного тока, работающих по системе провод — земля, и катодных установках ограничить блуждающий ток в земле практически невозможно. Единственно, что можно сделать в первом случае — это путем значительного заглубления рабочих заземлений ослабить интенсивность поля блуждающих токов на глубине залегания подземных сооружений. Однако, как правило, такое заглубление в зависимости от удельного сопротивления земли должно составлять десятки, а порою и сотни метров. [c.43]


Смотреть страницы где упоминается термин Катодные установки подземных сооружений: [c.174]    [c.476]    [c.594]    [c.396]    [c.19]    [c.170]    [c.171]    [c.22]    [c.233]    [c.235]    [c.271]    [c.191]   
Смотреть главы в:

Подземная коррозия металлов и методы борьбы с ней -> Катодные установки подземных сооружений




ПОИСК





Смотрите так же термины и статьи:

Катодные установки

Подземные сооружения

Ток катодный



© 2025 chem21.info Реклама на сайте