Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовое главное

Рис. 85. Схема возникновения рентгеновских спектров, п — главное квантовое число Рис. 85. Схема возникновения <a href="/info/2755">рентгеновских спектров</a>, п — главное квантовое число

    Какое максимальное число электронов может содержать атом в электронном слое с главным квантовым числом л =4  [c.44]

    Квантовые числа. Орбиталь можно однозначно описать с помощью набора целых чисел, называемых квантовыми. Их обозначают п — главное квантовое число, I — орбитальное квантовое число, Ш1 — магнитное квантовое число. [c.14]

    Главное квантовое число л 1 2 3  [c.20]

    V Главное квантовое число. Энергетические уровни. Согласно условиям квантования электрон в атоме может находиться лишь в определенных квантовых состояниях, соответствующих определенным значениям его энергии связи с ядром. Так, волновые функции, получаемые решением волнового уравнения для атома водорода, соответствуют только таким энергиям, которые задаются выражением [c.14]

    Радиальное распределение электронной плотности орбиталей. На рис. 8 показано радиальное распределение электронной плотности для S-, р- и -орбиталей атома водорода. Как видно из рисунка, число максимумов на кривой распределения электронной плотности определяется главным квантовым числом. Для s-электронов число максимумов равно значению главного квантового числа, для о-электро-HO J — на единицу меньше, а для -электронов — на две единицы [c.18]

    Как зависит энергня электрона в многоэлектронном атоме от орбитального квантового числа при постоянном значении главного квантового числа  [c.46]

    Из схемы видно также, что начиная с четвертого периода последовательность заполнения электронами отдельных подуровней определяется уже не только значением главного квантового числа п. Так, в атомах калия и кальция заполняются 45-орбитали, в то время как Зр-орбитали остаются вакантными. Аналогичная картина наблюдается у первых двух элементов последующих периодов — рубидия и стронция, цезия и бария, франция и радия. [c.43]

    При диссоциации молекул, вызванной столкновением молекул, главную роль играет колебательная и отчасти вращательная энергия молекул. Если в результате столкновения молекул колебательная энергия одной из них возрастает, то такая молекула при последующих столкновениях может перейти или в состояние с меньшим запасом колебательной энергии, или в состояние с еще большим запасом колебательной энергии. Обычно в результате одного столкновения передается один колебательный квант. Вероятность передачи колебательных квантов путем соударений быстро растет с температурой. Если в результате столкновений колебательная энергия двухатомной мо-. лекулы будет соответствовать колебательному квантовому числу и, макс. — 1. то следующее соударение приведет к диссоциации этой молекулы, что может быть изображено схемой  [c.80]


    Волновые функции атома водорода. Главное квантовое число и, азимутальное (орбитальное) квантовое число /, магнитное квантовое число т. Орбитали х-, р- и -орбитали спиновое квантовое число 5. 8-8. Многоэлектронные атомы. [c.329]

    Потому что 1) размеры электронного облака определяются только значением главного квантового числа (и) 2) при одном и том же п электроны с большим значением / сильнее экранируются внутренними [c.46]

    Мы уже знаем, что энергия электрона в атоме зависит от главного квантового числа п. [c.77]

    Главное квантовое число п характеризует энергетический уровень, на котором находится электрон, а следовательно, общий запас его энергии. Число п принимает целочисленные значения от 1 до оо, а для атомов элементов в нормальном, невозбужденном состоянии — от 1 до 7. Уровни, отвечающие этим значениям, обозначаются соответственно буквами К, Г, М, N, О, Р Q. [c.40]

    Для обозначения состояния электрона главное квантовое число ставят перед символом орбитального квантового числа. Например, 4 означает электрон, у которого = 4 и / = О (облако имеет форму шара) 2р означает электрон, у которого и = 2 и / =1 (облако имеет форму гантели) и т. д. [c.17]

    Остановимся на рассмотренном нами материале. Мы видели, что первый период, отвечающий начальной ступени в энергетике атома квантовому (главному) числу, равному 1, имеет только две вакансии . Атомы этого периода не могут обладать более чем двумя электронами. Таким образом, помимо водорода с одним электроном и гелия с двумя, в этом периоде не может быть более элементов. [c.81]

    У элементов подгруппы меди первая энергия ионизации существенно выше, чем у s-элементов I группы. Это объясняется проникновением внешнего rts-электрона под экран (п—1) с(1 -электронов. Уменьшение первой энергии ионизации при переходе от Си к Ag обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Аи обусловлено проникновением 6з-электрона не только под экран 5 1 -электронов, но и под экран 4/1 -электронов. Что касается второй энергии ионизации [удаление электрона из (п—1) ( 1 -подслоя , то у всех трех элементов она близка и по значению заметно меньше, чем у щелочных металлов. [c.620]

    Электрон в атоме водорода находится в состоянии с главным квантовым числом 5. Каковы допустимые значения квантового числа / для этого электрона Каковы допустимые значения квантового числа т при. / = 3 Какова энергия ионизации (в электронвольтах) этого электрона Какова энергия ионизации электрона с таким же значением п в ионе Не  [c.364]

Рис. 8-14. Зоммерфельдовские орбиты. В одноэлектронном атоме водорода с точечным ядром все орбиты, относящиеся к одному и тому же главному квантовому числу п. должны иметь одинаковую энергию. В многоэлектронном атоме, ядро которого окружено экранирующим облаком внутренних электронов, электроны на Рис. 8-14. Зоммерфельдовские орбиты. В <a href="/info/96550">одноэлектронном</a> атоме <a href="/info/1581">водорода</a> с точечным ядром все орбиты, относящиеся к одному и тому же <a href="/info/2444">главному квантовому числу</a> п. должны иметь одинаковую энергию. В многоэлектронном атоме, ядро которого окружено экранирующим облаком <a href="/info/479492">внутренних электронов</a>, электроны на
    Успехи в изучении строения молекул и развитие квантовой статистической физики привели к созданию нового метода расчета термодинамических функций и, в частности, химических равновесий. Этот метод дает возможность вычислять значения внутренней энергии (сверх нулевой), энтропии и теплоемкости газообразных веществ в широком интервале температур (до 4000— 6000 °С), исходя из величин энергий всех квантованных состояний молекулы, связанных с ее вращением, колебаниями, электронным возбуждением и другими видами движения. Для вычисления энергии каждого из состояний молекулы необходимо знать молекулярные параметры моменты инерции, основные частоты колебания, уровни электронного возбуждения и др. Эти величины находятся главным образом путем изучения и расшифровки молекулярных спектров. Вычисление же термодинамических величин проводится методами квантовой статистической физики. Здесь будут кратко изложены основы статистического метода расчета термодинамических функций. [c.327]

    Главное квантовое число. Итак, в одномерной модели атома энергия электрона может принимать только определенные значения, иначе говоря—она квантована. Энергия электрона в реальном атоме также величина квантованная. Возможные энергетические состояния электрона в атоме определяются величиной главного квантового числа п, которое может принимать положительные целочисленные значения 1, 2, 3... и т. д. Наи меньшей энергией электрон обладает при л = 1 с увеличением я энергия электрона возрастает. Поэтому состояние электрона, характеризующееся определенным значением главного квантового числа, принято называть энергетическим уровнем [c.75]

    Как показывают приведенные в табл. 2 данные, максимальное число электронов на каждом энергетическом уровне равно 2п где и — соответствующее значение главного квантового числа. Так, в / -слое может находиться максимум 2 электрона 2>1 = 2)  [c.87]


    Конфигурация электронной оболочки иевоз( ужденного атома определяется зарядом его ядра. Электроны с одинаковым значением главного квантового числа п об-разукт квантовый слой близких по размерам облаков. Слои с га = I, 2, 3, 4,. .. обозначаются соответственно буквами К, Ь, М. N.... По мере удаления от ядра емкость слоев увеличивается и в соответствии со 31 ачением п составляет 2 (слой К), 8 (слой Ь), 18 (слой М), 32 (слой Л/). .. элект-роноЕ (см. табл. 2). Квантовые слои в свою очередь построены из подслоев, объединяющих электроны с одинаковым значением орбитального квантового числа I. А подслои составлены из орбиталей на каждой орбитали могут находиться максимум два электрона (с противоположными спинами). [c.21]

    Главное квантовое число п может принимать любые положительные целочисленные значения п = 1, 2, 3, 4, 5,. ... Азимутальное (орбитальное) квантовое число / может принимать любые целочисленные значения от [c.364]

    Фотохимическое хлорирование метана до хлористого метила в жидкой фазе, например, в виде раствора в четыреххлористом углероде, протекает по этому способу значительно хуже. Квантовый выход при хлорировании метана ниже, чем при хлорировании хлористого метилена или хлороформа. При хлорировании метана требуется весьм1а интенсивное облучение, в результате чего получается главным образом [c.146]

    Периоды и семейства элементов. Как мы видели, период представляет собой последовательный ряд элементов, в атомах которых происходит заполнение одинакового числа электронных слоев. При атом номер периода совпадает со значением главного квантового числа п внешнего энергетического уровня. Различие в последовательности (аполнения электронных слоев (внешних и более близких к ядру) объясняет причину различной длины периодов. [c.28]

    Концентрация электронной плотнссти у ядра (степень проникновения электронов) при одном и том же главном квантовом числе наибол ьшая для 5-электрона, меньше — аля р-электрона, еще меньше — цля -электрона и т. д. Например, при п = 3 степень про-никноиения убывает в последовательности 35> Зр нагля/ ,но иллюстрирует рис. 8. [c.33]

    У элементов подгруппы цинка две первые энергии ионизации-выше, чем у -элементов соответствующих периодов. Это объясняется проникновением внешних -электронов под экран (п—1) 1 -электронов. Уменьшение энергии ионизации при переходе от Zn к Сс1 обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Hg обусловлено проникновением бх -электронов не только под экран 5й -электро-нов, но и под экран 4/ -электронов. Значения третьих энергий ионизации довольно высокие, что свидетельствует об устойчивости электронной конфигурации (п—В соответствии с этим у элементов подгруппы цинка высшая степень окисления равна +2. Вместе с тем (п—1) 1 -электроны цинка и его аналогов, как и у других -элементов, способны к участию в донорно-акцепторном взаимодействии. При этом в ряду Zn — d —Hg " по мере увеличения размеров (п—l) -opбитaлeй электроно-донорная способность ионов возрастает. Ионы Э ( ) проявляют ярко выраженную тенденцию к образованию комплексных соединений. [c.631]

    При прочих равных условиях потенциал нонизации тем больше, чем больше заряд ядра и меньше радиус атома или иона. С этой точки зрения в периоде с ростом заряда ядра должна наблюдаться тенденция к возрастанию потенциала иоиизацни (при удалении электрона с одним н тем же главным квантовым числом). Действительно, значения и /2 для Ве меньше, чем соответствующие значения для С. [c.43]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Более сложный вид имеют и графики раднальио1-о распределения верояшости для 25- и 35-электроиов (рис. 14), Здесь появляется уже ие одни максимум, как в случае 15-э.лектрона, а, соответственно, два пли три максимума. При этом главный максимум располагается тем дальше от ядра, чем больше значение глаопою квантовою числа п. [c.80]

    Таким образом, в многоэлектронных атомах энергия электрона зависит НС только от главного, но и от орбитального квантового числа. Главное квантовое число определяет здесь лишь некоторую энергетическую зону, в пределах которой точное значение энергии электрона определяется величиной /. В результате возрастание пер им но энергетическим подуровням происходит примерно в сле-дуюик м пор 1дхе (см. также рис. 22 иа стр. 94)  [c.86]

    Последовательность заполнения атомных электронных орбита-лей в зависимости от значений главного и орбитального квантовых чисел была исследована советским ученым В. М. Клечков-ским, который установил, что энергия эле[<трона возрастает по мере увеличения сум.мы этих двух квантовых чисел, т. е. величины ( + /). В соответствии с этим, им было сформулировано следующее положение (первое правило К л е ч к о в с к о г о) при увеличении заряда ядра атома последовательное заполнение элек тронных орбиталей происходит от орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (л + /) к орбиталям с большим значением этой суммы. [c.93]

    Энергетические состояния электронов одного уровня могут 11есколько отличаться друг от друга в- зависимости от конфигураций их электронных облаков, образуя группы э (ектронов разных подуровней. Для характеристики подуровня служит побочное, или орбитальное, квантовое число I, которое может иметь целочисленные значения в пределах от О до —1. Так, если главное квантовое число п = 1, то побочное квантовое число имеет только одно значение (/ = 0), а при этом значении п понятия уровень и подуровень совпадают. При га = 4 величина I принимает четыре значения, а именно О, I, 2, 3. Электроны, отвечающие этим значениям /, называются соответственно 8-, р-, с1- и /-электронами. [c.40]


Смотреть страницы где упоминается термин Квантовое главное: [c.14]    [c.16]    [c.19]    [c.214]    [c.41]    [c.43]    [c.76]    [c.77]    [c.85]    [c.93]    [c.94]    [c.95]    [c.350]    [c.351]    [c.352]   
Неорганическая химия (1987) -- [ c.33 ]

Теоретическая неорганическая химия Издание 3 (1976) -- [ c.33 , c.60 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.311 ]

Неорганическая химия (1979) -- [ c.55 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.311 ]




ПОИСК





Смотрите так же термины и статьи:

Главное квантовое число

Главное квантовое число . 2.5.2. Орбитальное квантовое число

Квантовое число главное и побочное

Квантовое число главное магнитное

Квантовое число главное определение понятия

Квантовое число главное таблицы также

Квантовое число молекулы главное

Квантовые числа атомные главные

Квантовые числа внутреннее, главное, магнитное, побочное правило запрета

Квантовые числа главные

Радон Lt также Инертные атом, главное квантовое число

Спектр атома водорода. Энергия атома. Главное квантовое число

Электрон квантовое число главное



© 2025 chem21.info Реклама на сайте