Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория диэлектрических потерь и поляризации

    Интерес к исследованиям диэлектрических потерь и проницаемости полимеров обусловлен не только важностью этих характеристик для практических применений. Современные теории диэлектрической поляризации и потерь позволяют в ряде случаев связывать значения г tgS = e"/e и параметры, характеризующие их зависимость от температуры и частоты электрического поля, со строением полимера и характером теплового движения макромолекул, т. е. имеются возможности использовать измерения этих величин для получения ряда сведений о строении полимера. [c.18]


    Отыскание адэкватных форм аналитического выражения связей между структурой и диэлектрическими свойствами вещества наталкивается на трудности расчета локального поля ц индуцированной поляризации, учета ближних и дальних сил, флуктуаций в статистическом ансамбле зарядов. В частности, одним из сложных вопросов является вопрос о соотношении макроскопического (т) и микроскопического (т ) времен релаксации. Как известно, т определяется из условия (ОтТ=1, где (От — частота приложенного поля, при которой фактор диэлектрических потерь е" достигает максимума, а зависимость диэлектрической проницаемости е от частоты претерпевает перегиб. Законность отождествления т и т не очевидна, так как различия между напряженностью внешнего и локального, действующего на молекулу, полей может составлять несколько порядков. Теоретические расчеты показали, однако, что отношение х 1% не выходит за пределы 0,67—1,0 [1]. Обосновывая с достаточной надежностью связь между молекулярными и макроскопическими характеристиками, существующие теории дипольной поляризации обеспечивают базу для дальнейшего развития диэлектрического метода изучения структуры вещества — установления структурно-релаксационных связей в условиях различных фазового и агрегатного состояний, температуры и давления. Особое значение это имеет для полимеров, в которых сложное молекулярное строение обусловливает сложный спектр релаксационных и структурных переходов, а следовательно, и многообразие физических и физико-химических свойств. [c.156]

    Интерес к исследованиям диэлектрических потерь и проницаемости полимеров обусловлен не только важностью этих характеристик для практических применений. Современные теории диэлектрической поляризации и потерь позволяют в ряде случаев связывать [c.114]

    Во многих случаях нафев за счет ионной поляризации с относительно низкими (по сравнению с электронной) частотами все же возможен — резиновая смесь здесь выступает в качестве системы гетерогенных веществ. При этом механизм нагрева все еще неясен. Можно обратиться к диэлектрической теории Вагнера, которая называет электрическую гетерогенность причиной потерь энергии, и на этом основании делается сравнение поглощения энергии электрически возбужденной средой с поглощением световой энергии оптически возмущенной системой. [c.40]

    Несбит и Пинк [8] повторили и продолжили эту работу. На основании исследования температурной зависимости тангенса угла диэлектрических потерь (tg б) они считают, что при температуре выше и ниже максимума потери обусловлены сквозной проводимостью. Для объяснения максимальных потерь, которые значительно превышают потери проводимости, привлекается теория поляризации Вагнера —Силлар-са, при этом допускается, что в этой температурной области суш ествуют частицы анизодиаметричной формы с электропроводностью, близкой к жидкому мылу. Однако нужно подчеркнуть, что максимум потерь появляется при температурах, нри которых растворы не являются еще явно гетерогенными в результате охлаждения. [c.301]


    Диэлектрические измерения, проведенные при различных частотах и температурах [25], позволяют находить зависимость логарифма частоты релаксационного максимума коэффициента диэлектрических потерь от обратной температуры (для удобства умножаемой на 1000). На рис. 3 приведены такие зависимости до нашим измерениям для жидкой воды, льда и воды, сорбированной на силикагеле и цеолите [26]. Аппаратурные ограничения не позволили нам на данной стадии исследования проследить ход этой завиСимоети для сорбированной воды в области положительных температур. Однако полученные результаты показывают, что сорбционно структурированная вода на силикагеле при сравнимых температурах имеет частоты диэлектрической релаксации на 5—6 порядков более высокие, чем обычный лед. В этом отношении она занимаетпромежуточную область между льдом и обычной жидкой водой. Наклон линий, приведенных на рис. 3, позволяет определить по теории абсолютных скоростей реакций энергии активации для процесса поляризации сорбированных молекул воды [27]. Эта величина для жидкой воды равна 4,0 ккал/молъ, для льда [c.238]

    Под а-процессом в этих работах понимался дипольно-сегментальный процесс поляризации в полимерах, а под Р-процессом — дипольно-групповой процесс поляризаций, в котором принимают участие малые по сравнению с сегментом участки основной цепи макромолекулы, а также боковые группы полимерной цепи. Соответствующие диэлектрические потери названы дипольно-сегментальныыи и дипольно-групновыми. Теория диэлектрической релаксации в полимерах представлена в работах Готлиба [152—154]. [c.150]

    Классическая теория постоянного или выпрямленного электрического тока в электролитах основана на предположении квазистационарных процессов. С одной стороны, квазистационарные процессы играют важную роль в познании прохождения электрического тока жидких веществ, обладающих свойствами е, ц и V. С другой стороны, быстропеременные во времени процессы, взаимосвязанные с электромагнитным излучением источника и взаимодействием с веществом на границе раздела фаз металл-электролит, зависящие от концентрации по времени, изменяющей электропроводность, зависящие от концентрации, плотности тока и поляризации , а также существование изменяющегося двойного электрического слоя на границе раздела двух фаз позволяют рассматривать электродную систему как бесконечно изменяющуюся в пространстве и времени под воздействием постоянно действующего возмущения. Рассматривая такую систему, отметим, что между электродами п электролитом происходит обмен энергии, имеет место переход материн иоп частицы с электрода в электролит и из электролита в электрод. Почи), ижу во всяком потоке электромагнитного излучения заключается не только определенная энергия, но и определенный импульс, всегда совпадающий с направлением излучения, то, следовательно, квант энергии заключает в себе определенный квант импульса, который и сообщает материальной частице толчок, совершая таким образом работу выхода материальной частицы. При переходе заряженной частицы с поверхности электрода в электролит происходит потеря (отражение) энергии, зависящая от диэлектрических и магнитных свойств среды, под влиянием которых существует та или иная контактная разность потенциалов электрод—электролит. С точки зрения волновой теории отражение происходит без изменения длины волны. Исходя же из квантовой теории длина волны может изменяться, если изменится размер кванта энергии. [c.60]


Смотреть страницы где упоминается термин Теория диэлектрических потерь и поляризации: [c.7]    [c.301]    [c.4]    [c.238]    [c.629]   
Смотреть главы в:

Электрические свойства полимеров Издание 2 -> Теория диэлектрических потерь и поляризации




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические потери диэлектрических потерь



© 2025 chem21.info Реклама на сайте