Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия стабилизации неароматических соединений

    Различие в энергиях основного состояния бензола и гипотетического неароматического циклогекса-1,3,5-триена соответствует степени стабилизации, определяемой специфицеским циклическим взаимодействием шести п-элек-тронов. Такое различие в энергии называется энергией ароматического резонанса. Очевидно, что количественное выражение энергии резонанса зависит от оценки энергии соответствующей неароматической структуры, поэтому (хотя и не только) различные значения энергии резонанса могут быть рассчитаны для различных гетероароматических систем. Однако следует заметить, что абсолютное значение энергии резонанса не такая уж важная характеристика, гораздо большее значение имеет ее относительное значение. С уверенностью можно утверждать, что резонансная энергия бициклических ароматических соединений, таких, как нафталин, значительно меньше, чем сумма энергий резонанса двух соответствующих моноциклических систем. Это означает, что в результате образования интермедиата (например, при реакции электрофильного замещения, разд. 2.2.2) потеря в энергии стабилизации меньше для бициклических систем, поскольку одно бензольное кольцо остается незатронутым в ходе реакции. Энергия резонанса пиридина того же порядка, что и энергия резонанса бензола, а энергия резонанса тиофена меньше по значению, чем энергия резонанса бензола. При переходе к пирролу и, наконец, к фурану наблюдается дополнительное уменьшение энергии стабилизации. Истинные значения энергии стабилизации для этих гетероциклических ароматических соединений варьируются в зависимости от сделанных предположений относительно энергии соответствующих им неароматиче-ских систем относительные энергии резонанса для бензола, пиридина, тиофена, пиррола и фурана равны 150, 117, 122, 90 и 68 кДж/моль соответственно. [c.17]


    ЭНЕРГИЯ СТАБИЛИЗАЦИИ НЕАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ [c.69]

    Энергия стабилизации неароматических соединений 71 [c.71]

    Проблема измерения ароматической стабилизации на основании модели простоя несопряженной т-электронной системы состоит в том, что энергия делокализации не является уникальным свойством циклических систем. Например, на основе простого метода МО Хюккеля можно показать, что энергия делокализации бутадиена составляет 0,472/3 другие ациклические сопряженные системы также имеют некоторую энергию делокализации. Пытаясь найти меру ароматичности, необходимо оценивать дополнительный вклад в общую энергию делокализации вследствие того, что соединение имеет циклическую структуру. В связи с этим было высказано предположение [36], что при расчете энергии резонанса следует использовать энергии связей неароматических систем, а не несопряженных систем в качестве эталонных структур. Было показано, что энергия т-связи линейных полиенов прямо пропорциональна длине цепи. Каждая дополнительная простая или двойная связь С—С в полиене вносит в общую т-энергию такой же вклад, как и в случае бутадиена или гексатриена. Это, конечно, не означает, что отсутствует сопряжение, но показывает, что сопряжение также влияет на энергию связи в нециклических системах. Следовательно, можно рассчитать эталонные энергии т-связей для любой циклической или ациклической т-системы, складывая величины, соответствующие определенным типам связей. Этот аддитивный принцип применим к т-связям с гетероатомами в такой же степени, как и к связям углерод — углерод. [c.36]

    Значения энергии резонанса для бензальдегида, ароматических кетонов и хинонов показывают, что сопряжение карбонильной группы с фенольной группой или двойной олефиновой связью также может вызвать стабилизацию. Но этот эффект очень мал, так что его нельзя установить достоверно (исключая хинон). Интересно и существенно, что полная энергия резонанса неароматического хинона определенно меньше, чем любого ароматического соединения. [c.109]

    В десяти главах книги рассматриваются энергия напряженности в насыщенных и ненасыщенных циклических органических со- < единениях, энергия стабилизации в неароматических соединениях, энергия полимеризации, энергия диссоциации связей и теплоты об- -< разования свободных радикалов, энергия образования карбонилов. [c.4]

    СТОГО нуклеофильного присоединения, в результате которого образуется неароматическое соединение. Вполне вероятно, что в переходном состоянии реакции депротонирования частично уже присутствует ароматическая система и что чем выше степень ароматической стабилизации, тем ниже энергия активации, требуемая для депротонирования. Промежуточный катион пирролия может [c.213]


    Выигрыш энергии в результате ароматизации см. гл. 1) обусловливает тенденцию ароматических соединений к сохранению типа , когда присоединение электрофильной, нуклеофильной или радикальной частицы приводит к лабильному аддукту, который стремится восстановить ароматичность, элиминируя ту же или другую частицу. В последнем случае конечным результатом оказывается замещение, которое и является наибЪ-лее характерным для ароматических соединений классом реакций (см. ч. 2—4). Однако возможна стабилизация системы после образования первичного аддукта не путем элиминирования, а путем дальнейшего присоединения еще одной частицы с образованием в кольце неароматической ненасыщенной системы, которая может вступать в последующие реакции присоединения вплоть до полного насыщения. [c.477]

    Сущность метода можно пояснить на примере определения ЭР гетероциклических соединений на основании измерений констант ионизации [39, 54]. Известно, что для р-протонирования УУ-метил-пиррола (55) р/Са = —5,1, а для р-протонирования неароматической модели — 1,4,4-триметил-1,4-дигидропиридина (56) рКа— — 7,4. Относя разность значений рКа в 12,5 единиц, соответствующую разности энергий в 0,61 эВ, целиком за счет различий ЭР оснований (55) и (56) и внося поправку в 0,26 эВ на стабилизацию диеиамина (56), обусловленную сопряжением, получают для Л -метилпиррола (55) величину эмпирической ЭР 0,87 0,17 эВ, что близко полученному для пиррола (41а) из термохимических измерений (табл. 1.1). [c.24]


Смотреть страницы где упоминается термин Энергия стабилизации неароматических соединений: [c.232]    [c.326]   
Смотреть главы в:

Теплоты реакций и прочность связей -> Энергия стабилизации неароматических соединений




ПОИСК





Смотрите так же термины и статьи:

Энергия соединения



© 2025 chem21.info Реклама на сайте