Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны из ароматических и гетероциклических соединений

    Реакция ароматических соединений с дизамещенными фор-мамидами в присутствии оксихлорида фосфора, называемая реакцией Вильсмейера или Вильсмейера — Хаака, представляет собой наиболее общий метод формилирования ароматических колец [262]. Однако она применима только к таким активным субстратам, как амины и фенолы. Ароматические углеводороды и гетероциклические соединения тоже подвергаются формили-рованию, но лишь в том случае, если они намного более реакционноспособны, чем бензол (например, азулены, ферроцены). И хотя наиболее широко используется М-метил-М-фенилформа-мид, другие арилалкил- и диалкиламиды также находят применение [263]. Вместо Р0С1з можно брать СОСЬ. Реакция проведена и с амидами других кислот, что приводит к образованию кетонов (в действительности это пример реакции 11-15), но это случай редкий. Атакующей частицей [264] выступает ион 26 [265], а механизм, по-видимому, может быть изображен следующей схемой  [c.360]


    Ацилирование по Фриделю — Крафтсу позволяет синтезировать соединения различных классов жирноароматические и ароматические кетоны, карбоновые кислоты, их эфиры и амиды, оксокислоты, карбо- и гетероциклические соединения  [c.390]

    Марганцевокислый калий применяют для окисления боковых цепей в ароматических и гетероциклических соединениях до карбоксильной группы. В большинстве случаев карбоновые кислоты менее растворимы в воде, чем их щелочные соли. Поэтому их можно выделить, подкисляя щелочной раствор, образующийся после окисления. В лаборатории реакции окисления используются главным образом для получения альдегидов, кетонов и кислот из соответствующих спиртов. [c.132]

    Полярные соединения — например, спирты, альдегиды, кетоны, простые и сложные эфиры, олефины, хиноны, ароматические, гетероциклические и металлоорганические соединения, дисульфиды, диселениды, сера, неорганические комплексы, углеводы, протеины и стероиды — часто растворимы в ДМФА [2, 17], ДМАА [2, 17], суль( лане [17] и ДМСО [4, 17]. Парафины, насыщенные циклические соединения, неполярные газы, спирты и кислоты с длинной цепью очень мало растворимы в рассматриваемых растворителях [2, 4]. Поляризуемость растворенных веществ оказывает существенное влияние на растворимость неионных соединений в полярных апротонных растворителях. [c.9]

    Полярография органических соединений. На ртутном капельном электроде способны восстанавливаться не только ионы металлов, но и многие органические вещества различных классов. К их числу относятся, например, углеводороды и их галоген-производные, альдегиды и кетоны, предельные и непредельные органические кислоты алифатического и ароматического рядов, меркаптаны, нитро- и нитрозосоединения, различные гетероциклические соединения, как акридин, хинолин и другие, алкалоиды и т. п. [c.223]

    Приведем количественные показатели способности к депротонированию некоторых метильных производных ароматических гетероциклических соединений 2-метилпиридин (рА 34), 3-метилпиридин (рЛ 37,7), 4-метилпиридин (рКа 32,2), 4-метилхинолин (рА 27.5) [128]. Полезно сравнить эти значения с значениями рЛ кетонов (19—20 для а-депротонирования) и толуола (- 40). Таким образом, для количественного превращения метилпиридинов в соответствующие анионы в результате латерального депротонирования необходимы сильные основания. Однако высокая стабилизация, возможная для таких анионов, позволяет применять слабые основания для генерирования этих анионов в небольшой равновесной концентрации и проводить реакции с их участием в таких условиях. Возможно, что депротонированию боковой цепи в этом случае [c.62]


    На приведенных в лекции 9 примерах адсорбции углеводородов разных классов, простых эфиров и кетонов на одном и том же инертном адсорбенте, содержащем только один вид атомов и обладающем однородной плоской поверхностью известной структуры, —на графитированной термической саже —была показана возможность переноса найденных по опорным молекулам данного класса углеводородов и кислородных соединений полуэмпирических атом-атомных потенциалов на другие молекулы того же класса (алканы, алкены, алкины, ароматические углеводороды, эфиры и кетоны). Была проверена также возможность переноса найденных так атом-атомных потенциалов на углеводороды и гетероциклические соединения, содержащие атомы углерода и кислорода различных электронных конфигурациях. [c.184]

    Таким образом, этот метод синтеза — наиболее подходящий метод получения кетонов, если исходным соединением служит ароматический или гетероциклический альдегид при реакции с более высокомолекулярным диазоалканом, чем диазометан, или если исходят из циклоалканона, содержащего шесть или семь атомов углерода в кольце. [c.156]

    В реакцию вступают также олефины, амины, ацетилены, спирты, альдегиды, нроизводные альдегидов и кетонов (оксимы и т. п.), алкилированные ароматические, конденсированные полициклические и гетероциклические соединения  [c.114]

    В настоящее время предложено большое число каталитических систем, осуществляющих реакции гидрирования молекулярным водородом различных ненасыщенных соединений алкенов, алканов, диенов, ароматических и гетероциклических соединений, альдегидов, кетонов, нитросоединений. Путем подбора соответствующих катализаторов и условий реакции удается достичь высокой степени селективности и осуществить реакции с получением асимметричных соединений. [c.541]

    Процесс гидрогенизационной очистки петролатумов и церезинов более сложен в связи с тем, что молекулы твердых углеводородов остаточного сырья содержат в основном циклические структуры и цепи разветвленного строения. Кроме того, сырье такого вида характеризуется повышенным содержанием ароматических и гетероциклических соединений. Изучение влияния основных факторов на эффективность гидрогенизационной очистки петролатума, полученного на Волгоградском НПЗ, позволило [158, с. 105-117] найти оптимальные условия процесса, при которых на А1-Со-Мо катализаторе, наиболее пригодном для гидроочистки остаточного сырья, можно получить глубокоочишенный петролатум. Из этого петролатума путем многоступенчатого обезмасливания в кетоно-ароматическом растворителе наряду с высокоплавким церезином выделены микрокристаллические воски разной температуры плавления (табл. 2.17), в которых не содержатся канцерогенные полициклические углеводороды. [c.96]

    При применении ртутной лампы низкого давления, обладающей высокой стабильностью и долгим временем жизни (более 5000 ч), детектирование проводят на длине волны 254 нм, которой соответствует 90% энергии излучения. На длине волны 254 нм высоким поглощением обладают многие органические соединения (ароматические, гетероциклические, кетоны и др.). [c.266]

    В реакцию вступают алифатические, ароматические, гетероциклические и жирноароматические карбонильные соединения. Наиболее реакционноспособными являются алифатические и алициклические альдегиды и кетоны. В случае кетокислот возможно выделение продуктов отдельных стадий реакции  [c.483]

    В качестве С—Н-кислотных соединений можно использовать кетоны, альдегиды, алифатические нитросоединения, синильную кислоту и ацетилен. Кроме того, по Манниху можно амино-алкилировать ароматические соединения, которые легко поддаются электрофильному замещению (см. табл. 85), например фенолы или гетероциклические соединения (тиофен, пиррол, индол). Из индола таким образом получают грамин  [c.170]

    В химии ароматических гетероциклических соединений инфракрасная спектроскопия применяется главным образом для изучения таутомерных превращений. Так, многие амино- и гидроксигетероарены могут существовать и в виде иеаромати-ческих иминных и кетонных таутомеров соответственно. В такой ситуации отдельные полосы поглощения можно отнести к определенным функциональным группам и таким образом оценить соотношение таутомеров этой проблеме посвящен подробный обзор [8]. [c.59]

    При достаточной реакционности ароматического ядра бензоилируемого амина возможно ожидать, особенно в присутствии некоторых хлоридов металлов (Zn b), вхождения бензоила также в соединение с атомом углерода ядра и образования продуктов конденсации — кетонов и гетероциклических соединений. В качестве примера можно привести бензоилирование а-нафтиламина "S  [c.592]

    Известен ряд методов ароматизации шестичленных алици-клических колец [12]. Легче всего ароматизируются соединения, уже содержащие одну или две двойные связи в кольце или конденсированные с ароматическим кольцом. Реакция применима также к пяти- и шестичленным гетероциклическим соединениям. Наличие функциональных групп в кольце обычно не препятствует протеканию реакции. Даже геж-диалкилзаме-щение не всегда предотвращает реакцию при этом одна алкильная группа часто мигрирует или происходит ее элиминирование. Однако для осуществления такого процесса требуются обычно более жесткие условия. В некоторых случаях субстрат теряет группы ОН и СООН. Циклические кетоны превращаются в фенолы. Семичленные циклы и циклы большего размера часто изомеризуются в шестичленные ароматические кольца, хотя частично гидрированные азуленовые системы (часто встречающиеся в природных соединениях) превращаются в азу-лены. [c.265]


    По той же причине наблюдаются различия в величинах удерживания для определенного спирта при применении диоктилсебацината, динонилфта-лата, дибутилфталата и трикрезилфосфата. Неподвижные фазы типа сложных эфиров обладают средней растворяющей способностью по отношению к алканам, простым и сложным эфирам, кетонам, меркаптанам и тиоэфирам. Благодаря их электроне акцепторным свойствам наблюдается также сильное взаимодействие с донорами электронов, например с олефинами, ароматическими углеводородами и гетероциклическими соединениями, но селективность отделения алкенов от алканов незначительна она немного возрастает в последовательности диоктилсебацинат — динонилфталат — дибутилфталат — трикрезилфосфат (см. табл. 1). Вообще можно установить, что селективность не особенно сильно выражена и для других гомологических рядов вследствие одновременного присутствия арильных и алкильных групп (которые обусловливают растворяющую способность по отношению к углеводородам) и карбоксильных или фосфатных групп (которые способствуют растворению кислородных соединений). Исключение составляет лишь разделение галогенопроизводных углеводородов, протекающее, впрочем, в случае сложных эфиров не хуже, чем на многих других неподвижных фазах, например нитрил-силиконовых маслах (Ротцше, 1963). При температурах выше 120° при исследовании спиртов и аминов следует быть осторожным вследствие возможности химических реакций с неподвижной фазой. [c.202]

    Ввиду ароматического характера систем фурана а, р-ненйсы-щеяные кетоны, содержащие фурильную группу, должны вести себя подобно своим фешльным аналогам [133, 222—226]. Это положение подтверждается примерами, приведенными в табл. V. Однако характерным отличием является то, что в этих случаях почти не происходит вторичных реакций циклизации или изомеризации. В табл. V включено тлкже несколько гетероциклических соединений, которые не являются производными фурана. [c.218]

    Углеводороды длинноцепочечные н- и изопарафины с примесью сложных эфиров, кетонов, следов гетероциклического кислорода Высокоароматизированные три-и бициклические структуры, преимущественно углеводородного типа со следами гетероциклического кислорода и серы, двойных связей би- и трициклические структуры высокой ароматичности, содержащие заместители С1-С3 и ке-тонные группы, кислородные циклы типа бензофурановых смесь гидроаренов и аренов в среднем с тремя циклами ангу-лярного типа конденсации, а также пиррольные и пиридиновые циклы, двойные связи, тиокетоны и тиоэфиры, содержащие алкильные заместители, в среднем С1-С4 линеарно-конденсированные ароматические соединения с преобладанием трициклических, замещенные кетонами, хиноид-ными группами, алкильными цепями, в том числе и с пре-дельными связями [c.100]

    Кетоны с ароматическими и гетероциклическими заместителями получают ацилированием ароматических и гетероциклических соединений хлорангидридами и ангидридами кислот в присутствии кислот Льюиса (см. с. 147). Среди других многочисленных синтетических методов определенное значение имеет реакция Хёща (индуцируемое кислотами присоединение нитрилов к активированным ароматическим и гетероароматическим соединениям) [10]. Кроме того, щироко используется внутримолекулярное ацилирование по Фриделю - Крафтсу арил-алкановых кислот с образованием бензоцикланонов (см. с. 185-186). [c.115]

    Основная область научных исследований — химия и технология синтетических красителей. Предложил (1910) оригинальную теорию цветности органических соединений, во многом предвосхитившую современные квантовохимические взгляды по этому вопросу. Изучал подвижность водорода в таутоме-рах ароматического и гетероциклического рядов, а также кислорода, соединенного двойной связью с углеродом или азотом в альдегидах, кетонах и нитрозо-соединениях. Синтезировал ряд субстантивных красителей для хлопка. Предложил хиноидную классификацию красителей и сам термин краситель . Доказал наличие химического взаимодействия между красителями и волокнами белкового происхождения. Разработал точный способ идентификации красителей с помощью спектрофотометра с двойной щелью. Исследовал химизм процесса цветной фотографии. Разработал метод получения азокрасителей, при котором в одном аппарате происходили реакции как диазотирования, так и азосочетания. Предложил промыщленный способ получения фурфурола из подсолнечной лузги. [c.402]

    Подобно формальдегиду реагируют другие алифатические и ароматические альдегиды, а также алифатические, жирноароматические и гетероциклические кетоны, Р-кетоэфиры, производные малоновой кислоты, нитросоединения, ароматические и гетероциклические соединения, с подвижным атомом водорода кольца (пиррол, хинальдин, а-пиколин и др.), производные ацетилена  [c.268]

    Порошки полиамидов используют в хроматографической практике с 1955— 1956 гг. Полиамиды применяют для жидкостной адсорбционной хроматографии липофильных и гидрофильных веществ — фенолов, фенолгликозидов, флаво-ноидов (флавонов, халконов, катехинов и др.), кетонов, хинонов, лактонов, полиспиртов, углеводов, органических кислот, сульфокислот и сульфонамидов, тиаминов, ароматических нитросОединений, ДНФ- и дансил-производных аминокислот, азотистых гетероциклических соединений (индолов, хинолинов, алкалоидов, нуклеиновых оснований, нуклеозидов и нуклеотидов, желчных пигментов), стероидов и желчных кислот, каротиноидов, витаминов, антибиотиков, пестицидов. [c.47]

    К этой категории относятся многие гетероциклические соединения, обладающие ароматическим характером (например, циануровая кислота, изатин, ниридоны, карбостирил, барбитуровая кислота и другие кислородсодержащие производные пиримидина, пурины и т.д.К Для этих соединений не удалось выделить амидных и иминных форм, аналогичных кетонным и енольным формам -кетоэфиров и -дикетонов. Это обусловлено чрезвычайно большой скоростью разрыва и образования связи между протоном и атомом кислорода или азота. (Катонные и енольные формы -кетоэфиров и -дикетонов можно выделить вследствие большой инертности связи С—Н.) [c.87]

    Ацетон, метилэтилкетон в смеси с гексаметилфосфортриамидом, был применен для потенциометрического титрования трет-бута-нольно-бензольным раствором (С4Нэ)4МОН серусодержащих дикарбоновых кислот 1[409, 410], мономерных и полимерных соединений ряда бензимидазола и гетероциклических соединений [411]. Показано, что анилиды алифатических и ароматических карбоновых кислот проявляют кислотные свойства в ацетоне и метилзтил-кетоне. Кислотные свойства анилидов обусловлены их диссоциацией по типу протонных кислот при протолитическом разрыве связи N—Н под влиянием растворителей [412]. Разработаны методы дифференцированного потенциометрического титрования двух- и трехкомпонентных смесей бензанилидов и их смесей с бензойными кислотами (рис. 11) в среде ДМК, ПД, ДМФА и других растворителей [412]. [c.112]

    Пикриновая кислота (см. опыт 173) образует со многими ароматическими углеводородами, с фенолом, аминами, простыми эфирами, альдегидами и кетонами ароматического ряда, а также с различными гетероциклическими соединениями хорошо кристаллизующиеся молекулярные комплексы. Некоторые из них, например пикрат бензола, нестойки, другие же, в особенности пикраты многоядерных углеводородов, более устойчивы. Число присоединяющихся молекул пикриновой кислоты обычно равно числу бензольных колец углеводорода (считая конденсированные системы за одно кольцо). Так, трифенилметан присоединяет три молекулы пикриновой кислоты, дифенилэтан (дибеизил) — две, а бензол, нафталин, антрацен, фенантрен — лишь по одной. Пикрат нафталина состава С1оНв"СбН2(Н02) ОН имеет темп. пл. 149 °С и очень мало растворим в воде и спирте его образование используется при количественном определении нафталина. При нагревании в избытке спирта этот пикрат распадается на компоненты. [c.205]


Смотреть страницы где упоминается термин Кетоны из ароматических и гетероциклических соединений: [c.284]    [c.452]    [c.73]    [c.371]    [c.279]    [c.281]    [c.102]    [c.196]    [c.462]    [c.58]    [c.208]    [c.115]    [c.39]    [c.25]    [c.45]    [c.228]    [c.511]   
Органические синтезы. Т.2 (1973) -- [ c.2 , c.123 , c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Гетероциклические соединени

Гетероциклические соединения

Гетероциклические соединения Гетероциклический ряд

Кетоны ароматические



© 2025 chem21.info Реклама на сайте