Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фаги и трансдукция

    Трансдукцией называют передачу ДНК от клетки-донора клетке-реципиенту при участии бактериофагов. Обычно при этом фаг переносит лишь небольшой фрагмент ДНК хозяина. Различают два вида трансдукции неспецифическую (общую), при которой может быть перенесен любой фрагмент ДНК хозяина, и специфическую, затрагивающую лишь строго определенные фрагменты ДНК. При неспецифической трансдукции ДНК клетки-хозяина включается в частицу фага либо дополнительно к его собственному геному, либо вместо него, тогда как при специ- [c.464]


    Еще одним доказательством генетической роли фаговой ДНК служит явление трансдукции. Некоторые фаги способны переносить генетический материал от бактерии-донора, в которой фаг размножался, к бактерии-реципиенту, инфицируемой данным фагом. Трансдукция есть перенос генетических признаков бактерии, т. е. фаг переносит как свой собственный генетический материал, так и часть генетического материала бактерии-донора. Этим материалом опять-таки служит ДНК [27, 28]. [c.488]

    Специфическая трансдукция. Наиболее известным примером служит трансдукция, осуществляемая фагом X (см. разд. 4.2.2). Обычно он трансдуцирует лишь определенные гены, а именно gal и Ыо. Как уже говорилось, этот фаг при переходе в состояние профага включается в определенный участок хромосомы бактерии-хозяина-между генами gal и Ыо. Отделение фаговой ДНК от бактериальной хромосомы (например, в результате УФ-облучения) может произойти неточно, т. е. какой-то фрагмент ее останется в хромосоме, а близко расположенные гены клетки-хозяина будут захвачены фаговой ДНК. По-видимому, причиной этого может быть неправильная рекомбинация. [c.466]

    Конъюгация и трансформация — не единственные способы передачи генетического материала. Гены могут переноситься из одной бактериальной клетки в другую с помощью умеренных фагов. Такой перенос бактериальных генов получил название транс-дукции. Трансдукция оказывается возможной, если в процессе размножения фага одна из частиц случайно захватит фрагмент бактериальной хромосомы, как правило, содержащий очень небольшое число генов. Когда такая фаговая частица заражает бактерию-реципиент, бактериальная ДНК проникает в клетку таким же путем, как фаговая. Между трансдуцированной бактериальной ДНК и гомологичным участком бактериальной хромосомы может произойти обмен, и как следствие его возникают рекомбинанты, несущие небольшую часть генетического материала клетки-донора (рис. 40, А). Передача признаков с помощью фагов показана для бактерий, принадлежащих к разным родам. [c.152]

    Значение мобильных элементов в эволюции. Высказываются предположения, что перенос генов мобильными элементами может служить одним из факторов эволюции. Если помимо классических путей передачи наследственной информации от родителей к потомкам существует еще горизонтальный перенос (даже между отдаленными видами), разнообразие генетических изменений должно резко возрасти. Заметим, что, например, перенос генов от одной бактерии к другой с помощью фага (трансдукция) известен давно, а теперь используется и в [c.141]


    При обычной трансдукции переносятся любые генетические маркеры, но с различной вероятностью. Абсолютные значения вероятности переноса генетического локуса невелики (порядка 10 —10 на один трансдуцирующий фаг). Только самые близкие генетические локусы могут переноситься при трансдукции одновременно. Все же остальные маркеры переносятся независимо друг от друга, и вероятность их одновременного попадания в одну акцепторную клетку равна произведению вероятностей отде.льных [c.388]

    При трансдукции геном бактерии-реципиента рекомбинирует с участком генома фага, несущим генетическую информацию от бакте-рии-донора. Происшедшее изменение (рекомбинация) становится затем [c.106]

    Генетическая карта. В результате применения описанного выше метода прерванной конъюгации, позволяющего выяснить временную последовательность переноса генов из клетки-донора, можно составить карту расположения генов в бактериальной хромосоме (рис. 15.17). Скорость их переноса в течение всего процесса остается постоянной. Моменты перехода внутрь клетки-реципиента позволяют судить о расстояниях между ними в хромосоме. При использовании этого метода не удается учитывать различия менее одной минуты. Для более тонкого картирования может служить анализ сцепления при трансдукции (переносе генов фагом). [c.460]

    Предпосылкой успешного переноса генов при специфической трансдукции (в отличие от неспецифической) является интеграция фага в геном клетки-хозяина. [c.466]

    Явление трансдукции, по существу, аналогично трансформации. Разница состоит в том, что в первом случае генетический материал переносится фагами, а во втором происходит непосредственное введение структур, содержащих частицы ДНК. [c.256]

    Если при трансдукции участки генома переносятся от одной бактерии к другой с помощью фагов, то для так называемой трансформации фаг не нужен. При трансформации участки генома отыскивают свой путь в геном другой клетки, если можно так выразиться, самостоятельно. [c.163]

    Были открыты два разных типа трансдукции обычная трансдукция и специальная трансдукция Оа -локуса фагом Я,. [c.388]

    Гены могут переноситься из одной бактериальной клетки в другую и в процессе трансдукции. При этом функцию векторов выполняют фаги, случайно захватывающие фрагмент бактериальной хромосомы в процессе формирования зрелых фаговых частиц. При заражении клетки-реципиента таким фагом может произойти включение фрагмента ДНК другой клетки путем обмена по гомологичным участкам. [c.240]

    Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности — плазмид, транспозонов, фагов. [c.6]

    Внехромосомные элементы наследственности — плазмиды, контролирующие лекарственную устойчивость у многих стафилоккоков, передаются не при конъюгации, а с помощью фагов (трансдукция) они всегда существуют отдельно от хромосомы, т. е. автономно. [c.88]

    При построении карты, приведенной на рис. 15-1, были использовав НЬ1 не только результаты опытов с прерыванием конъюгации, но и данное, полученные при изучении трансдукции бактериофагом Р1 [15]. Грансдукция фагом, более детально рассмотренная в разд. Г, позволяет 1ереносить короткие фрагменты ДНК длиной около 2 мин (см. карту [c.191]

    Умеренные фаги способны вносить существ, изменения в структуру и функционирование бактериального генома благодаря двум процессам - интегращш фаговой ДНК в хромосому бактерии и трансдукции (переносу фагом бактериальных геиов из одних клеток в другие). Трансдуцирую-щие фаги образуются в результате неточного исключения из хромосомы интегрир. фаговой ДНК. При этом часть собственной ДНК фага утрачивается, и вместо нее в фаговый геном включается участок бактериальной ДНК, достигающий иногда значит, размеров. Интегрир. фаги могут мутировать и терять способность к исключению из хромосомы, становясь вследствие этого ее неотъемлемой частью. В этом случае гены фага начинают определять ф-ции клетки, т.е. становятся ее собств. генами. [c.80]

    Различают два вида трансдукции неспецифическую (общую) и специфическую (ограниченную). В первом случае трансдуцирующими агентами являются профаги, способные соединяться с любым участком бактериального генома. При специфической трансдукции агентами выступают лишь те фаги, ДНК которых соединяется с одним определенным участком бактериального генома. Так, фаг К трансдуцирует лишь один признак — способность ферментировать галакто.зу. В ДНК Es heri hia oli есть лишь одна точка, в которой она может рекомбинировать с ДНК фага К. В рекомбинации участвуют липкие концы ДНК (последовательность оснований на двух одноцепочечных концах линейной ДНК фага К комплементарны друг другу и поэтому молекула ДНК обладает липкими концами при нагревании раствора ДНК фага if при 60 °С и последующем медленном охлаждении липкие концы соединяются друг с другом за счет комплементарного спаривания оснований). [c.106]

    Не следует смешивать трансдукцию и лизогенную (вирусную) конверсию (нехромосомная лизогения), при которой также изменяется фенотип бактерий. Попавший в клетку фаг либо вегетирует и лизирует бактерии, либо, в случае профагов, индуцирует у части зараженных клеток иммунную реакцию, предотвращающую вегетацию фага и лизис бактерий. Так возникает лизогенное состояние, когда геном фага в виде профага находится в интегрированном с бактериальной хромосомой состоянии. Тогда некоторые гены фага непосредственно (контролируя образование особого фермента) или опосредованно (взаимодействуя с бактериальными генами) изменяют фенотип зараженной клетки. Например, S-формы колоний туберкулезных микобактерий могут возникать при лизогенизации шероховатых штаммов. [c.106]


    Трансдукция. Трансдукция — это перенос генетического материала от бактерии-донора к бактерии-реципиенту с помощью фага. Впервые явление трансдукции было открыто в 1951 г. Ледербергом с сотрудниками у Salmonella typhimurium. Сейчас различают неспецифическую и специфическую трансдукции. При неспецифической трансдукции возможен перенос фагом любого признака от бактерии-донора к бактерии-реципиенту. Перенос осуществляется только умеренными (невирулентными) фагами. Умеренные фаги способны заражать бактерии, однако не размножаются в них и не вызывают лизиса, а включаются в ДНК бактериальной клетки и в таком неинфекционном состоянии в виде так называемого профага передаются от клетки к клетке при размножении. Культуры бактерий, содержащие профаг, называются лизогенными. В этих культурах с небольшой частотой (в одной из 10 — 10 клеток) наблюдается спонтанное размножение фага и происходит лизис клетки с освобождением фаговых частиц, обнаруживаемых с помощью бактерий-индикаторов, для которых такой фаг вирулентен. [c.108]

    Неспецифическая трансдукция. Перенос участков бактериальной хромосомы фагами был открыт в 1951 г. Ледербергом и Циндером у Salmonella typhimurium. В решающем эксперименте (рис. 15.19) штамм-донор В " инфицировали умеренным бактериофагом Р22. После лизиса клетки-хозяина выделяли свободные фаги и инкубировали их вместе со штаммом-реципиентом В , который генетически отличался от штамма B" по меньшей мере одним признаком. Авторы нашли, что после высева инкубированных клеток на подходящую среду появлялись рекомбинанты, обладавшие признаками штамма-донора В . [c.465]

    Явление неспецифической трансдукции можно представить на следующем примере. Если инфицировать фагом Р-22 штамм-донор S. typhimurium, обладающий определенными признаками, а затем подействовать полученным лизатом на лизогенный для этого фага штамм-реципиент той же бактерии, не имеющий этих признаков, то среди клеток реципиента обнаруживаются особи, обладающие одним из признаков донора. При этом к разным клеткам могут переноситься различные признаки. Считают, что отдельные частицы фага Р-22, вирулентного для донора, размножаясь в клетке, захватывают фрагменты бактериальной ДНК- Попадая в клетки лизогенного для фага Р-22 штамма-реципиента, эти частицы, включаясь в ДНК, переносят признаки, закодированные на таких фрагментах. Включение (интеграция) трансдуцируемого участка ДНК в хромосому реципиента происходит по типу разрыв-воссоединение . Обычно переносимые фрагменты довольно короткие из-за небольших размеров частицы фага. Поэтому, как правило, в клетку-реципиент переносится, в отличие от процесса трансформации, только один признак. Попадание двух частиц фага, несущих различные гены, в одну п ту же клетку мало вероятно. Если же при транс- [c.108]

    Наряду с неспецифической существует специфическая трансдукция. Например, фаг Я всегда располагается на хромосоме бактерии-донора по соседству с геном, ответственным за синтез р-галактозидазы, и специфически переносит этот ген в клетки реципиента, неспособные синтезировать данный фермент. Выделяют еще абортивную трансдукцию, когда трансдуцированный участок ДНК не интегрируется в клетке и не реплицируется. Наличие его устанавливают, благодаря обнаружению продукта, за образование которого отвечает данный ген. При размножении культуры наблюдается разбавление этого продукта, поскольку клетки не передают трансдуцированный ген друг другу. По этому признаку и определяют характер происшедшей трансдукции. [c.109]

    С помощью трансдукции переносятся способность сбраживать различные углеводы, резистентность к антибиотикам, пе-нициллиназная активность, спорообразование и другие признаки. Процесс трансдукции, по-видимому, играет важную роль в природе, приводя к появлению штаммов бактерий с атипичными свойствами. В пользу этого предположения говорит частое выделение из природных источников умеренных фагов, способных вызывать трансдукцию. [c.109]

    Обратимся теперь к особому процессу — специальной трансдукции (Морзе и Ледерберги), — детально изученному только в одном случае — при переносе маркера Gal фагом %. Мы уже упоминали, что фаг % не способен осуществлять обычную трансдукцию. Но если индуцировать профаг % к лизису, то в образующихся при лизисе вирулентных фагах содержится с известной вероят- Щ о с mi [c.391]

    В интегрированном состоянии фаговая ДНК реплицируется вместе с бактериальной и подвержена тем же регуляторным воздействиям, что и удвоение бактериальных хромосом. Информация, содержащаяся в фаговой ДНК, в это время не проявляется. Только в результате перехода профага в вегетативное состояние восстанавливается автономия фаговой ДНК и начинается размножение фага. Этот обратный процесс может произойти спонтанно или в результате индукции (например, под действием ультрафиолетового облучения). Исключение фаговой ДНК из бактериальной хромосомы происходит, вероятно, путем обращения процессов, приведших к ее включению, и осуществляется очень точно более 99% фаговых частиц, освобождающихся из лизогенных клеток, идентичны с исходным (инфицирующим) фагом. Это означает, что фаговая ДНК при ее выключении выщепляется точно в том же месте, где происходила интеграция. Только в редких случаях (одном из 1(30 ООО) выключение ДНК фага происходит аномально (см. разд. 15.3.3, где говорится о трансдукции). [c.151]

    Включение профага в хромосому бактерии в определенном положении вызывает определенный эффект, в частности иммунитет к действию фага того же самого типа или его мутантов. Наличие профага влияет также на биохимические свойства бактерии-хозяина, и если при конъюгации или трансдукции (см. ниже) этот профаг переносится на нелизогенный штамм [c.253]

    Явление трансдукции заключается в том, что бактериофаги, растворившие подвергшуюся их нападению бактериальную клетку, переносят части хромосом из этой клетки в другие бактериальные клетки, которые вследствие этого оказываются генетически измененными, В таких случаях речь идет, как правило, об умеренных фагах, которые мирно прикреп- [c.254]

    Как же происходит трансдукция Проще всего было бы предположить, что фаг Р22, лизируя клетку штамма Aгg S взламывает ее геном, и при созревании фаговых частиц в них встраивается один из его обломков. Этот обломок впоследствии мог бы быть попросту навязан второй клетке-хозяину (Arg S ). На самом деле это не так. По-видимому, фаг прикрепляется к геному бактерии так, как это показано на рис. 66, после чего между свободным плечом генома фага и бактериальным геномом происходит обмен участками (кроссинговер ). Теперь фаг содержит участок бактериального генома, например Arg" (но взамен он отдал часть своего генома ). Во вновь инфицируемой клетке-хозяине, очевидно, может происходить то же самое привнесенный участок бактериального генома с Arg замещает участок хозяйского бактериального генома Arg . В результате зараженная (лизогенизированная) бактерия превращается в Arg, т. е. приобретает способность синтезировать аргинин. [c.160]

    Бактерии и в самом деле скрещиваются друг с другом. Если смешать клетки двух различных ауксотрофных штаммов Es heri hia oli К12, то среди их потомков обнаруживаются рекомбинанты, ауксотрофные сразу по двум факторам роста, а также рекомбинанты, возвратившиеся к дикому типу (т. е. прототрофы, или анауксотрофы). Однако в данном случае необходим прямой контакт между двумя бактериальными клетками в отличие от трансдукции (когда участок бактериального генома переносится из клетки в клетку бактериофагами) или трансформации (когда участок генома, свободно блуждая, проникает в клетку-реципиент). Показано, что если разделить два штамма, способных к взаимной рекомбинации, поместив их в U-образную трубку со стеклянной пористой перегородкой, не пропускающей бактерий, но легко проницаемой для фагов и фрагментов генома, то рекомбинации не происходит. [c.170]

    Вторым типом эксперимента является трансдукция, когда фрагменты генетического вещества и свойственные им маркеры переносятся из одной клетки в другую бактериофагом вместе с его собственной ДНК. Характерной особенностью трансдукции, так же как и трансформации, является перенос из клетки в клетку именно ДНК, а не нуклеопротеида. Мы знаем, что в хромосоме ДНК не существует в изолированном виде молекулы ДНК застроены в нуклеопротеидную структуру. То же можно утверждать и о вирусах, в частности фагах. Однако по опытам Херши, выполненным методом радиоактивной метки, при заражении клетки фагом последний как бы впрыскивает в клетку свою ДНК, белок же при этом не переходит (с точностью до долей процента). В последнее время удался также опыт заражения клеток выделенной и очищенной вирусной ДНК (подобно тому, как раньше удался опыт заражения растений вирусной РНК). [c.286]

    Вместе с тем многие основные вопросы еще пе решены. Например, важно выяснить, что именно передается при конъюгации из клетки в клетку, — хромосома, т. е. полимолекулярная структура из ДНК и белков, или же отдельные молекулы ДНК. При трансформации в клетку проникает ДНК в виде отдельных макромолекул, при трансдукции фагом, по-видимому, также одна ДНК. Во всяком случае, из опытов Херши следует, что фаг впрыскивает в клетку почти чистую ДНК (нрпмесь белка не превышает 0,5%). Что происходит при конъюгации, неясно. Известно лишь, что различные цитоплазматические частицы через соединительную трубку не передаются и в женских клетках не появляются. Это было показано для ферментных белков и частиц вирусов и те и другие не проходят при конъюгации клеток. Все это делает вероятным механизм конъюгации, при котором белковая оболочка хромосомы распадается и в женскую клетку проходят молекулы ДНК, несущие генетические маркеры. Однако прямым опытом это положение не доказано. Наконец, вопрос, ван ный для понимания рекомбинации, — это механизм расщепления зиготы в потомстве. [c.341]

    В 1952 г. Ледерберг и Зиндер открыли новое важное явление — перенос генетических локусов из одного штамма бактерий в другой частицами фага. Явление это получило название трансдукции в отличие от трансформации, происходящей без участия фага. В настоящее время трансдукция — один из важнейших методов изучения генетических карт бактерий. Возможно, что это самый общий метод получения генетической рекомбинации у бактерий. Трансдукция наблюдается при инфицировании рецепторного штамма бактерий фагом, выращенным на другом штамме, донор-ном, с отличным генотипом. Трансдукция отличается от ранее рассмотренной конверсии тем, что а) она вовсе необязательно относится к рецепторным клеткам в лизогенном состоянии лизогенный рецепторный штамм представляет лишь ряд чисто практических удобств, так как огромное большинство клеток в нем выживает после инъекции фагадга ДНК б) переносимые при траис-дукции свойства целиком связаны с генотипом клеток-доноров в то же время лизогенпая конверсия практически не зависит от свойств клеток, на которых был выращен вирулентный фаг. [c.388]

    Подобная лизогенная культура может быть индуцирована ультрафиолетовым светом или другими методами. Тогда она лизирует с образование фагов X и Xdg примерно в равных количествах. Ясно, что если использовать этот вторичный лизат для трансдукции локуса Gal" в культуру Е. oli Gal , то мы получим трансдукцию с вероятностью порядка 50% в расчете на частицу фага, или порядка 100% в расчете на фаги Xdg. Таким способом мы приходим от лизата, ведущего трансдукцию с низкой вероятностью (LFT — low frequen y, transdu- [c.393]


Смотреть страницы где упоминается термин Фаги и трансдукция: [c.347]    [c.107]    [c.179]    [c.465]    [c.304]    [c.256]    [c.162]    [c.389]    [c.389]    [c.390]    [c.390]    [c.391]    [c.393]    [c.393]    [c.422]    [c.213]    [c.244]   
Смотреть главы в:

Современные методы создания промышленных штаммов микроорганизмов -> Фаги и трансдукция




ПОИСК







© 2025 chem21.info Реклама на сайте