Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефектные штаммы

    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]


    Использование ретровирусных векторов имеет и еще один большой недостаток. Хотя эти векторы создаются так, чтобы они были дефектными по репликации, геном штамма ретровируса (вируса-помощника), который необходим для получения большого количества векторной ДНК, может попасть в то же ядро, что и трансген. Несмотря на все принимаемые меры, ретровирусы-помощники могут реплицироваться в организме трансгенного животного, что совершенно недопустимо, если этих животных предполагается использовать в пищу или как инструмент для получения коммерческого продукта. И поскольку существуют альтернативные методы трансгеноза, ретровирусные векторы редко используются для создания трансгенных животных, имеющих коммерческую ценность. [c.419]

    После того как были установлены молекулярные основы трансформации бактерий (переноса генов из одного штамма в другой), у ученых появилась надежда, что аналогичный механизм — введение нормальных генов в дефектные соматические клетки — можно будет использовать для лечения наследственных заболеваний человека. Перспективы генной коррекции соматических клеток стали более реальными в 1980-х гг. к этому времени были [c.484]

    Предположим, что в определенном участке ДНК последовательность оснований такова, какой мы ее изобразили в верхней строке на фиг. 94. Допустим далее, что информация считывается слева направо, начиная с первого Ц, и что основания сгруппированы, как мы говорили раньше, по три. Тогда вызванное мутагеном профлавином выведение второго Т слева нарушит считывание всех триплетов, расположенных вправо от места делеции (фиг. 94, вторая строка). Полученный таким путем мутант будет сильно дефектным и не сможет заразить штамм К. Однако если провести новую мутацию и вставить при этом другое основание X в третий триплет слева, то четвертый, пятый и последующие триплеты будут считываться правильно и нарушенными окажутся [c.271]

    Мутанты можно комбинировать и по-другому. Если получить две плюс -мутации, то фаг окажется дефектным. Если же получить три плюс - или три минус -мутации, то фаг ведет себя обычным образом и заражает штамм К (фиг. 94, нижняя строка). [c.272]

    Агаровую среду (партию из 25—30 пробирок) засевают стерильно спорами продуцента. Засеянные пробирки помещают на 7—12 суток в термостат с температурой 26—28°. За это время на поверхности агара вырастает продуцент в виде желтовато-белого мучнистого налета. Пробирки тщательно проверяют и дефектные (имеющие трещины, слабые ватные пробки или нетипичный рост продуцента) отбраковывают. На пробирки наклеивают этикетки с указанием названия продуцента, даты посева, номера партии посевного материала. После проверки стерильности и активности (количество окситетрациклина, образуемое штаммом) посевной материал передается на производство. [c.69]

    Мутации часто приводят к появлению белков, неполноценных как по своим химическим свойствам, так и но функциональной активности. Как уже было отмечено, все до сих пор полученные штаммы ВТМ, мутантные по белку оболочки, менее стабильны, чем дикий тип. Многие из таких мутантов оказались настолько нестабильными, что вообще не удалось выделить мутантный вирус. Для нескольких дефектных штаммов вирусные белки, выделенные из тканей, листьев, инфицированных этими вирусами, хотя и сохраняли способность к образованию спиральных агрегатов, не могли образовывать палочковидные частицы с РНК ВТМ (как дикого тина, так и мутантного). Два из этих белков были проанализированы [182, 449, 450], и выяснилось, что у одного из них произошла одна замена, а у другого — две. При этом две из этих трех аминокислот оказались расположенными у края немутирующего участка (остатки 95 и 112 см. фиг. 13). [c.207]


    Недавно удалось выяснить условия, при которых происходит агрегация вирусных белков и РНК с образованием вирусоподобных частиц еще для одного, несколько меньшего, класса вирусов — РНК-содержащих фагов группы f2. Частицы, полученные из оболочечного белка фага MS2 и его РНК, в соответствующих условиях имели на электронных микрофотографиях такой же вид, как и частицы исходного фага, однако константа седиментации таких частиц составляла 69S вместо 81S и, кроме того, они не обладали инфекционностью [491]. Очень похожие результаты были получены в опытах с фагом fr [211]. Свойства этих неинфекционных частиц напоминали свойства фагов некоторых генетически дефектных штаммов (атЬег-мутанты), у которых отсутствовал фактор созревания — гистидинсодержащий белок, получивший название белка А. Фаги дикого типа этой группы содержат по одной молекуле белка А (см. гл. VHI, разд. В). [c.223]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]

    Результаты многочисленных исследований свидетельствуют о том что генетический код, установленный для Е. соИ, является универсальным. Так, например, в лабораториях Уитмана и Френкель-Конрата препарат РНК, экстрагированный из вируса табачной мозаики, обработали азотистой кислотой известно, что при этом происходит дезаминирование многих остатков цитозина с образованием урациловых остатков, в результате чего кодоны U U (серин) превращаются в UUU (фенилаланин). Аналогичным путем из кодона ССС (пролин) может образоваться СиС (лейцин). Оказалось, что при заражении растений табака препаратом РНК, обработанной азотистой кислотой, аминокислотная последовательность вирусного белка оболочки, выделенного из мутантных штаммов, действительно меняется [22]. Причем многие из происшедших изменений можно было точно предсказать исходя из данных, приведенных в табл. 15-3. Сходным образом, замены аминокислот в дефектных молекулах гемоглобина (рис. 4-17) в большинстве случаев могут быть обусловлены изменением только одного основания. Так, гемоглобин S может образовываться в результате одного из следующих изменений в седьмом кодоне GAA(Glu) GUA(Val) или GAG(Glu)- ->GUG(Val). Еще один аргумент в пользу универсальности генетического кода состоит в способности рибосом и молекул тРНК из Е.соН осуществлять трансляцию цепи мРНК, кодирующей синтез гемоглобина, и синтезировать при этом полноценный гемоглобин [23]. [c.195]

    Эксперимент состоял в следующем. В ген Aj-пептида V. holerae был встроен ген устойчивости к тетрациклиггу. При этом прерывалась рамка считывания для Aj-пептида, но штамм становился устойчивым к тетрациклину. Его нельзя было использовать в качестве вакцины и потому, что со временем происходила спонтанная утрата тет-рациклинового гена, и синтез энтеротоксина восстанавливался. Чтобы обойти эту проблему, создали штамм с дефектной нуклеотидной последовательностью, кодирующей А,-пептид, которая не могла восстанавливаться (рис. 11.6). Для этого использовали следующий подход. [c.236]

    Вирус-помощник (Helper virus) Вирулентный штамм вируса, в присутствии которого дефектный вирус может размножаться в клетке-хозяине. [c.545]

    Перенос генетического материала путем прямого контакта между двумя клетками называется конъюгацией. Уже давно на основании морфологических данных предполагали, что и у бактерий может происходить своего рода спаривание однако только эксперименты с множественными мутантами бесспорно доказали, что и у бактерий возможна передача генетического материала при прямом межклеточном контакте. В 1946 г. Ледерберг и Татум провели решающий опыт с двумя мутантами Е. соИ К12, каждый из которых был ауксотрофным по двум различным аминокислотам (рис. 15.14). Один двойной мутант нуждался в аминокислотах А и В, но был способен синтезировать С и D (А В D ) другой мутант был ему комплементарен (А В" С D ). Эти мутанты не росли на минимальной питательной среде и не образовывали колоний. Однако если на ту же минимальную среду высевали смесь суспензий обоих мутантов, то колонии появлялись. Клетки этих колоний обладали наследственной способностью синтезировать все аминокислоты, т.е. принадлежали к типу A B D (были прото-трофными). Такие клетки возникали с частотой 1 10 это были генетические рекомбинанты-они объединяли в себе генетическую информацию двух реципрокно дефектных (взаимодополняющих) родительских клеток. Использование в качестве исходных штаммов множественных мутантов исключало возможность появления ревертантов, так как вероятность одновременной реверсии по двум генам составляет величину порядка 10 на генерацию. Необходимой предпосылкой рекомбинации служил прямой контакт родительских клеток. [c.456]


    Процессы, происходящие при таком неспецифическом переносе ДНК, весьма сложны. Во время репродукции фага Р22 в клетках штам-ма-донора В в капсиды вместо фаговой ДНК могут включаться фрагменты бактериальной хромосомы. Таким образом, фаголизат содержит смесь нормальных и дефектных фагов. Заражение штамма-реципиента В нормальным фагом ведет, как правило, к лизису клеток. Однако в некоторые клетки проникают дефектные трансдуцирующие фаги, ДНК которых способна рекомбинироваться с хромосомой реципиента. Происходит обмен гомологичными участками ДНК, что может привести к замене дефектного гена реципиента интактным геном донора. [c.465]

    Какова природа вещества (апорепрессора), синтез которого контролируется геном I Недавние эксперименты показали, что Ьас-репрессор представляет собой белок, способный специфически взаимодействовать с Ьас-онераторным участком в ДНК. Функция репрессора заключается в блокировании транскрипции. Удаление ренрессора (обычно в результате взаимодействия с индуктором) инициирует транскрипцию. Участок, служащий началом координированного синтеза т-РНК, расположен рядом с операторным участком и носит название промотора (р) В результате мутации гена I образуются мутантные репрессоры различных типов I"-штаммы либо вообще не синтезируют ас-ренрессора, либо синтезируют дефектный репрессор, не способный блокировать транскрипцию ас-оперона 1 -штаммы синтезируют молекулы репрессора, не способные эффективно взаимодействовать с индуктором, вследствие чего в этих клетках Ьас-оперон выключен всегда — как в отсутствие индуктора, так и в его присутствии наконец, [ -штаммы синтезируют репрессор, которому для соединения с оператором необходим индуктор. У этих штаммов ферменты -оперона синтезируются в отсутствие индуктора, а введение индуктора в среду ингибирует их синтез. [c.537]

    Бензер решил установить, не обусловлен ли фенотип гП-мутантов из его коллекции повреждениями более чем в одной функциональной единице. То обстоятельство, что два г11-мутанта при разнообразных экспериментальных условиях проявляют один и тот же фенотип, само по себе вовсе не гарантирует, что соответствующие мутационные изменения затрагивают одну и ту же функциональную единицу. Мы уже упоминали, например, что стерильные пятна типа г на обычных штаммах Е. соИ образуются при разных мутациях, удаленных друг от друга настолько сильно, что вряд ли они затрагивают одну и ту же функциональную единицу. И если разные гП-мутанты неспособны размножаться на непермиссивных штаммах К, то это не обязательно означает, что всем им свойствен один и тот же функциональный дефект генетического материала. Для выяснения принадлежности двух различных мутаций гП к одной и той же функциональной единице Бензер воспользовался так называемым цис-транс-те-стом, или тестом на комплементарность (фиг. 153), приспособив его для-работы с фагами. Этот тест был разработан ранее применительно к высшим организмам стой же целью, т. е. для изучения природы функциональной единицы. Комплементационный тест Бензера был основан на том, что на штамме К, зараженном одновременно гИ-мутантом и фагом дикого типа г, оба типа размножаются нормально. Это означает, что нормальный ген родительского фага дикого типа способен обеспечивать функцию, необходимую для размножения на штамме К не только фага дикого типа, но и дефектного гП-мутанта. На языке генетики можно сказать, что при смешанном заражении штамма К двумя фагами ген дикого типа г доминирует над мутантным аллелем гН. В тесте на комплементарность клетки штамма К заражают двумя гИ-мутантами (каждый из которых в одиночку не способен размножаться на штамме К), чтобы выяснить, смогут ли они при смешанном заражении помогать друг другу и образовывать инфекционное потомство. Если два мутанта способны к такому совместному размножению, то это означает, что две мутации этих мутантов локализованы в разных функциональных единицах фагового генома. Неспособность одного из мутантов размножаться на штамме К (иными словами, его фенотип гН) свидетельствует о том, что этот мутант неспособен осуществлять какую-то определенную функцию или вызывать синтез какого-то определенного белка, необходимого для размножения фага в зараженной клетке. Фенотип гП второго мутанта также свидетельствует о неспособности осуществлять какую-то необходимую функцию, но только другую, т. е. [c.310]

    Открытие дефектности трансдуцирующего фага К, осуществляющего специфическую трансдукцию, стимулировало аналогичные опыты для проверки возможной дефектности трансдуцирующего фага Р1, у которого трансдукция неспецифична. В ранних исследованиях по неспецифической трансдукции трансдуктанты, полученные после заражения нелизогенных реципиентов, были обычно лизогенными (т. е. несли профаг трансдуцирующего фага). Это объяснялось тем, что не принималось соответствующих предосторожностей для предотвращения множественного заражения нелизогенных реципиентов препаратом трансдуцирующего фага. Когда удалось наконец подобрать условия для действительно единичного заражения, оказалось, что в геноме трансдуцирующего фага Р1 также имеется дефект — функциональный или структурный. Однако в отличие от дефектно-лизогенных трансдуктантов, образующихся при единичном заражении нелизогенных реципиентов Gal" фагом Xag, почти все трансдуктанты, возникающие при единичном заражении нелизогенных реципиентов трансдуцирующим фагом Р1, оказались нелизогенными и чувствительными к тому типу фага, который осуществил трансдукцию, т. е. к фагу Р1. Лизогенные трансдуктанты можно, конечно, получить, если заразить клетки штамма-реципиента с высокой множественностью, т. е. несколькими частцами фага Р1. Однако популяция фагов, высвобождающихся после индукции ультрафиолетом таких лизогениых трансдуктантов, не обладает высокой трансдуцирующей активностью, свойственной HFT-лнза-там, которые получаются в результате индукции клонов гетерозигот GaT/Gal после специфической трансдукции фагом Kdg. [c.355]

    Из других вирусов для подобных исследований годятся лишь РНК-содержащие фаги класса 2, так как у них, как и у вирусов группы ВТМ, известна аминокислотная последовательность белка оболочки. Под действием азотистой кислоты было получено несколько дефектных мутантов фага В17, растущих на пермиссивном (разрешающем) штамме 326В1Е (зи I), у которых один из трех остатков глутамина (остатки 6, 50, 54) был заменен на се- [c.207]

    По-видимому, все клетки, инфрщированные вирусом саркомы Рауса, трансформируются и становятся злокачественными [400]. Высказывалось предположение, что эта высокая степень онкогенности, не свойственная другим вирусам, связана с онисанными выше проявлениями дефектности у этого вируса. Однако теперь это кажется маловероятным, поскольку штаммы вируса саркомы Рауса, не обладающие псевдодефектными свойствами, также оказываются хорошими трансформантами то же самое относится к высокопродуктивному штамму Брайана, если он атакует чувствительные к нему клетки. [c.275]

Рис. 21-7. Тест Эймса на мутагенность. В нем иснользуется онределенный штамм бактерий рода Salmonella, дефектный но синтезу гистидина (his ), и, следовательно, нуждающийся для роста в этой аминокислоте. Если испытываемое вещество обладает мутагенным эффектом, ген his может нод действием этого соединения ревертировать к дикому типу. Образовавшиеся при этом бактерии-ревертанты способны расти на среде без гистидина. Для увеличения чувствительности теста в геном тестерного штамма введена мутация по системе репарации, что делает эти бактерии особенно восприимчивыми к действию повреждающих ДНК агентов. Большинство соединений, демонстрирующих мутагенность в этом тесте, являются Рис. 21-7. <a href="/info/567550">Тест Эймса</a> на мутагенность. В нем иснользуется онределенный <a href="/info/101500">штамм бактерий</a> рода Salmonella, дефектный но <a href="/info/98762">синтезу гистидина</a> (his ), и, следовательно, нуждающийся для роста в <a href="/info/824240">этой аминокислоте</a>. Если испытываемое <a href="/info/1503761">вещество обладает</a> <a href="/info/577779">мутагенным эффектом</a>, ген his может нод <a href="/info/1002316">действием этого</a> соединения ревертировать к <a href="/info/700379">дикому типу</a>. Образовавшиеся при этом бактерии-ревертанты способны расти на среде без гистидина. Для <a href="/info/250411">увеличения чувствительности</a> теста в геном тестерного штамма введена мутация по <a href="/info/1356199">системе репарации</a>, что делает эти <a href="/info/1324216">бактерии особенно</a> восприимчивыми к действию повреждающих ДНК агентов. Большинство соединений, демонстрирующих мутагенность в этом тесте, являются

Смотреть страницы где упоминается термин Дефектные штаммы: [c.335]    [c.471]    [c.301]    [c.302]    [c.259]    [c.45]    [c.122]    [c.141]    [c.160]    [c.243]    [c.315]    [c.196]    [c.447]    [c.74]    [c.211]    [c.483]    [c.50]    [c.55]    [c.161]    [c.365]    [c.271]    [c.15]    [c.65]    [c.81]    [c.426]    [c.50]    [c.211]    [c.213]    [c.296]   
Смотреть главы в:

Вирусы растений -> Дефектные штаммы




ПОИСК





Смотрите так же термины и статьи:

Дефектность



© 2025 chem21.info Реклама на сайте