Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантала оксиды

Таблица 15. Свойства оксидов ванадия, ниобия и тантала Таблица 15. <a href="/info/1498973">Свойства оксидов ванадия</a>, ниобия и тантала

    Для получения ванадия, ниобия и тантала их природные соединения сначала переводят в оксиды либо в простые или комплексные галиды, которые далее восстанавливают металлотермическим методом  [c.540]

    Тантал Та м п Элементарный тантал, оксиды, гидроксиды, галогениды, карбиды, нитраты, нитриды Иные соединения [c.352]

    Ванадий, ниобий и тантал взаимодействуют с кислородом,галогенами, азотом, водородом, углеродом и другими веществами — оксидами, кислотами и т. д. Однако химическая активность этих металлов проявляется только при высоких температурах, когда разрушается защитная пленка, делающая нх пассивными при обычных условиях. Особенно прочная пленка образуется иа поверхности тантала, который по химической стойкости не уступает платине. [c.276]

    Азотная кислота действует почти на все металлы (за исклю-ением золота, платины, тантала, родия, иридия), превращая их нитраты, а некоторые металлы — в оксиды. [c.413]

    В соответствии с номером группы основная степень окисления этих элементов +5, однако при нормальных условиях для ванадия стабильной является +4. В то время как у ванадия легко достигаются низшие степени окисления ( + 4, +3, -Ь2 конфигурации d (Р и Ф), ниобий обычным путем можно восстановить только до степени окисления +3 (опыт 2). Восстановление тантала в водном растворе вообще невозможно. Известны соединения с формальной степенью окисления -1 ([М(СО)б]-, где M=V, Nb, Та) и +1 ([У01руз]+, n- sHsM( 0)4, где M=Nb, Та) (табл. В.39). Низшие и дробные степени окисления этих элементов встречаются в соединениях, содержащих группы М (разд. 36.11.1). Химические свойства соединений ванадия (И) весьма напоминают свойства соединений цинка, а ванадия(1П)—титана(1П), железа(Ш) и алюминия. Донорные основные свойства оксидов ванадия ослабляются с увеличением формальной степени окисления. [c.612]

    Оксиды и гидроксиды. Высшие оксиды получаются обычно ири непосредствениом взанмодействии металлов с кислородом, низшие же (преимущественно ванадия) при взаимодействии высших с соответствующими металлами. Свойства оксидов ванадия, ниобия и тантала приведены в табл. 15. [c.277]

    Химический характер оксидов ванадия меняется от основного оксида ванадия (II) через амфотерные к кислотному оксиду ванадия (V), У оксидов ниобия (V) и тантала (V) кислотный характер выражен слабее, чем у оксида ванадия (V). [c.277]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    Колонки из тантала [221], тантала — оксида тантала или циркония — оксида циркония [220] наиболее целесообразно применять для разделения смесей с коррозионно-активными компонентами. [c.254]

    Ванадий способен гореть в кислороде с образованием высшего оксида Ниобий и тантал реагируют с кислородом только при [c.276]

    Тантала оксид (тантала пентоксид) [c.142]

    Tantaloxyd n окись тантала, оксид тантала 1. ТаОз двуокись тантала . ТагОб пятиокись тантала. [c.392]

    Нитриды ванадия, ниобия и тантала образуются при действии азота на металлы или аммиака на их оксиды. Нитриды представляют собой металлоподобные, термически и химически весьма [c.278]

    Многочисленны предложения по получению мезитилена дегидроконденсацией ацетона. В качестве катализаторов этой реакции рекомендовали смесь серной и фосфорной кислот [108], соляную кислоту в присутствии апротонного растворителя, например, N-метилпирролидона [109], соли и оксиды тантала [НО] или ниобия [111] на носителях, алюмомолибденовые катализаторы, промоти-рованные палладием [112], и др. [I, с. 221]. Реакцию, как правило, проводят в газовой фазе при 200—500 °С и объемной скорости 0,3—1,0 ч , нередко при повышенном давлении. Глубина превращения ацетона за проход составляет около 50%, селективность реакции зависит от катализатора и условий процесса. Побочным продуктом процесса является оксид мезитила. Самые вы- [c.273]

    По материалу матрицы композиты делятся на три группы металлические, керамические и органические. Композиционные материалы с керамической матрицей или керметы синтезируют методом порошковой металлургии на основе тугоплавких оксидов, боридов, карбидов и нитридов различных элементов и содержат такие тугоплавкие металлы как хром, молибден, вольфрам, тантал. [c.327]

    Так протекают реакции с оксидами кадмия, меди, свинца. При взаимодействии углерода с оксидами кальция, ванадия, тантала получаются карбиды  [c.133]

    На основании этих экспериментальных данных заключают исследованные образцы представляют собой одно и то же твердое вещество, а именно такое-то соединение переменного состава. Нетрудно заметить, что подобное заключение имеет только мнимую связь с экспериментом. На самом же деле оно предопределено представлением о соединениях переменного состава. Действительно, ведь мы заранее предполагаем, что все образцы однотипного состава и строения, обладающие близкими свойствами, являются образцами одного и того же вещества, например карбида тантала, оксидов железа, титана и т. д. Так, если мы можем выразить состав ряда образцов оксида титана формулой ТЮ1,д 2,о и рентгеновское исследование обнаруживает одинаковость их структуры, то даже без исследования свойств данных образцов мы не допускаем сомнений в том, что име м дело с образцами двуокиси титана. Между тем эксперимент в действительности говорит о другом каждый образец исследуемого вещества имеет свой индивидуальный состав, несовпадающее строение и собственные свойства. В вышеуказанных опытах мы устанавливаем отнюдь не идентичность состава, строения и свойств, а сходство, подобие исследуемых образцов. Образцы какого-нибудь вещества представляют индивидуальное химическое соединение только при их полной идентичности. Следовательно, рассматриваемые образцы вовсе не являются образцами одного и того же твердого соединения. Нетрудно заметить, что каждое твердое вещество, которое до настоящего времени считают соединением переменного состава, в действительности является не чем иным, как рядом однотипных соединений постоянного состава, количество которых в каждом ряду чрезвычайно велико, но не бесконечно. [c.170]

    Кислородные соединения ванадия, ниобия и тантала. Оксиды типа МваОв [c.312]

    Соединения ванадия, ниобия и тантала. Оксиды этих металлов — твердые кристаллические вещества. Среди них наиболее характерны и устойчивы оксиды Э2О5, кислотные свойства которых ослабевают от УаОй к ТзаОз. Ванадий образует также оксиды со степенями окисления +2, "ЬЗ и - -4. [c.414]

    Для ванадия (V) известны лишь оксид V2O5 и фторид VFg, тогда как для ниобия (V) и тантала (V) известны и все дру гие галиды SHalg. Для Э (V), кроме того, характерны оксогалиды типа Э0На1з. Все указанные соединения типично кислотные. Некоторые отвечающие им анионные комплексы приведены ниже  [c.544]

    К соединениям кластерного типа относятся также низшие оксиды ниобия и тантала. Так. NbO состоит из кластерных группировок NbgO,2- Полагают, что связи М—М проявляются также в низших оксогалидах NbOlj, ТаОС12- [c.557]

    Оба металла, в особенности тантал, устойчивы во многих агрес сивных средах. На инх не действуют соляная, серная, азотная,, клорная кислоты и царская водка, так как на поверхности этих металлов образуется тонкая, но очень прочная и химически стойкая оксидная пленка. У тантала, например, эта пленка представляет собой оксид тантала (V) ТагОа. Поэтому на тантал действуют только такие реагенты, которые способны взаимодействовать с этим оксидом или проникать сквозь него. К подобным реагентам относятся фтор, фтороводород и плавиковая кислота, расплавы н1елочей. [c.653]

    Не подворгаются действию ННОз только золото, платина, родий, рутений, иридий и тантал. Концентрированная кислота пассивирует алюминий, железо и хром из-за образования нерастворимых пленок оксидов  [c.123]

    Оба металла, в особенности тантал, устойчивы во многих агрессивных средах. На них не действуют соляная, серная, азотная, хлорная кислоты и царская водка, так как на поверхности этих металлов образуется тонкая, но очень прочная и химически стойкая оксидная пленка. У тантала, например, эта пленка представляет собой оксид тантала (V) ТазОб. Поэтому на тантал действуют только такие реагенты, которые способны взаимодействовать с этим оксидом или [c.509]


    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Для кадмия, олова, свинца, осаждающихся почти без перенапряжения (поляризации), приходится изыскивать специальные условия. В противном случае получаются грубокристаллические некомпактные осадки, совершенно не обладающие защитными свойствами. Металлы, разряд и выделение которых сопровождается высоким перенапряжением, — железо, никель, кобальт, хром — осаждаются в виде мелкокристаллических компактных осадков. Такие металлы, как молибден, вольфрам, титан, тантал и ниобий, вообще не удалось выделить из водных растворов в чистом виде. Они выделяются только в виде оксидов, гидроксидов или очень тонких (до 0,3 мкм) металлических пленок. [c.364]

    Ниобий и тантал разделяют на непропитанной бумаге в виде фторидов в одной из двух систем диэтилкетон, насыщенный водным раствором 2,2 М плавиковой кислоты, — 2 М азотная кислота (./ / Nb — 0,55 Та — 1,0) или смесь 100 мл метилизобуликетона с 3 мл 40%-ной плавиковой кислоты (Л/ ЫЬ —0,1 Та — 0,87). Разделение во второй системе используют для количественного определения обоих элементов в стали сначала химически выделяют эти элементы в виде оксидов, которые затем переводят во фториды и разделяют хроматографически. Обнаруживать и количественно определять эти элементы можно, например, с помощью 8-оксихинолина. [c.242]

    II др, Изополисоедииеиия молибдена п вольфрама могут быть получены в результате сплавления нормальных солей с кислотообразующими оксидами (Na2W0,,+W0. = Na2W20,). Водой они разлагаются с образованием акваполисоединений. Многие изополисоединения тантала н ниобия ведут себя по отношению к воде аналогично производным молибдена и вольфрама. [c.237]


Смотреть страницы где упоминается термин Тантала оксиды: [c.494]    [c.1150]    [c.392]    [c.392]    [c.392]    [c.522]    [c.62]    [c.62]    [c.276]    [c.66]    [c.194]    [c.123]    [c.163]   
Неорганическая химия (1989) -- [ c.303 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Оксид-иодиды тантала

Тантал

Тантала оксид (тантала пентоксид)

Тантала оксид определение кислорода

Тантала оксид разложение гидроксидом натри

Тантала оксид хлорирование



© 2025 chem21.info Реклама на сайте