Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазерные абсорбционные исследования

    Изложены результаты работ сотрудников ГЕОХИ АН СССР за 1982—1985 гг. по созданию методик анализа природных и сточных вод. Подробно описаны исследования по усовершенствованию и созданию методик атомно-абсорбционного и атомно-эмиссионного определения тяжелых металлов, в том числе с сорбционным и экстракционным концентрированием фотометрическое определение тяжелых металлов и сульфатов ионометрическое и вольтамперометрическое определение тяжелых металлов, аммония, сульфидов и галогенидов проточно-инжекдионный метод анализа природных вод и атмосферных осадков. Описано также определение минеральных компонентов сточных вод методом тонкослойной хроматографии, ряда нормируемых органических соединений — методами газовой, жидкостной и ионной хроматографии, а также методами ИК-спектроскопии и лазерной флуориметрии. [c.2]


    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]


    В последней части разд. 5.2 приведены некоторые специфические приложения лазерной абсорбционной спектроскопии к аналитической химии. В разд. 5.3 рассматривается оптическое возбуждение молекул с помощью лазеров. Этот метод позволяет провести большое число различных исследований возбужденных состояний с высоким разрешением. В качестве примеров можно назвать флуоресценцию, индуцированную лазерным излучением, измерения времен жизни возбужденных состояний, спектроско- [c.243]

    В аналитической спектроскопии в названиях различных методов, как правило, отражены объекты исследования и процессы, лежащие Р) основе определения этих объектов, например атомно-абсорбционный, атомно-флуоресцентный методы анализа. В методе, основанном на селективной лазерной ионизации, объектом исследований являются атомы, а процессы, позволяющие детектировать эти атомы, связаны с образованием ионов. Поэтому, с точки зрения авторов настоящего учебного пособия, данный метод логично называть в общем виде атомно-ионизационным (АИ). [c.183]

    Сборник разделен на две части определение минеральных и органических нормируемых компонентов. Внутри каждого из этих разделов материал расположен не по элементам, как, например, в Унифицированных методах исследования качества вод , а по разрабатываемым способам анализа. В соответствии с этим в разделе Определение нормируемых минеральных компонентов последовательно излагаются фотометрические, атомно-абсорбционные, хроматографические и ионометрические методики. В разделе Определение нормируемых органических соединений описаны методики, базирующиеся на хроматографии и ИК-спектрометрии. В конце сборника помещены три статьи по дистанционному определению ряда органических веществ методом лазерной флуориметрии. [c.4]

    Лазерная искра является объектом многочисленных спектроскопических и оптических исследований. Она используется также в качестве источника света для спектрального анализа [10.13]. Есть попытки применения ее в качестве яркого источника сплошного спектра для абсорбционных измерений [10.14]. Можно предполагать, что область применения этого источника будет расширяться. [c.259]

    Исследование больших кристаллов хорошего оптического качества дает определенные преимущества, например возможность пропускать многократно луч лазера через образец, что обеспечивает повышение отношения сигнал/шум. Этого можно достичь, если вырезать из кристалла слегка клинообразный блок и алю-минировать его торцевые поверхности, оставив небольшое отверстие для входа луча лазера. Луч многократно проходит через образец перпендикулярно направлению наблюдения. Выбор лазерного источника для исследования спектра КР конкретного образца должен быть очень тщательным. Важно отметить, что не существует единого и специфического спектра КР, подобно абсорбционному спектру, и что вид спектра зависит от частоты возбуждающей линии. В общем случае, чем выше частота лазерного источника, тем сильнее интенсивность комбинационного рассеяния. Это обусловлено, во-первых, зависимостью интенсивности от четвертой степени возбуждающей частоты и, во-вторых, резонансным характером поляризуемости. Однако если энергия возбуждающих фотонов близка к частоте полосы поглощения кристалла, то будет происходить поглощение как возбуждающего, так и рассеянного излучения. Для каждой линии КР существует своя возбуждающая частота, с которой наблюдаемое рассеяние при данной геометрии будет максимальным. [c.438]

    Карякин и сотрудники в серии исследований изучали различные комбинации и приемы ато.мно-абсорбционного анализа. Так, напрнмер, в качестве первичного источника они выбрали горячие излучающие стенки кратера [27], лазер в режиме свободной генерации сочетали с импульсной лампой с полым катодом, а также применяли специальный способ подготовки образца, чтобы увеличить эффективность испарения [28]. Кроме того, ими проводилась дополнительная атомизация паров, образующихся под действием лазерного излучения, в ходе двухступенчатого процесса [29]. [c.89]

    В разд. 3.2.9 обсуждалось улучшение отношения сигнал/шум при использовании лазерных пучков высокой интенсивности, позволяющих увеличить число фотонов для исследования нестационарных атомно-абсорбционных измерений. Если поперечное сечение атомизатора имеет ограниченную площадь, то плотность падающего излучения, или темп поступления фотонов на 1 см для длин волн в пределах контура линии поглощения может стать настолько высокой, что произойдет уменьшение коэффициента поглощения, а значит, и изменение наклона и формы градуировочного графика. Рассмотрим теперь более подробно влияние плотности падающего лазерного излучения на коэффициент поглощения. [c.161]

    Высокая интенсивность лазерного излучения есть самое лучшее средство для снижения относительного дробового щума, который ранее ограничивал применимость атомно-абсорбционных измерений при исследовании короткоживущих продуктов в нестационарных атомизаторах нли в динамических химических системах. Когда необходимо провести срочный анализ, его можно быстро выполнить с атомизаторами, работающими в стационарных режимах. Высокая интенсивность снижает также влияние эмиссионного шума высокотемпературных атомизаторов. К сожалению, из-за эффекта насыщения образец нельзя подвергать действию излучения слишко.м высокой интенсивности без существенного снижения сигнала поглощения. [c.186]


    По этим причинам большинство описанных ниже исследований будет ограничено измерением эмиссионных спектров. Однако последние достижения Фурье-спектроскопии, обусловленные совершенствованием привода подвижного зеркала, применением лазерного референтного канала, разработкой пироэлектрического болометра на основе ТГС, увеличением динамического диапазона аналого-цифровых преобразователей и, самое главное, наличием малых ЭВМ, дают основание надеяться, что в предстоящем десятилетии появится много работ по абсорбционной спектроскопии и спектроскопии отражения. [c.121]

    Среди лазеров на основе органических соединений с оптической накачкой наиболее глубоко изучены лазеры на электронных переходах в сложных органических молекулах. В результате техника ЛОС достигла весьма высокого уровня развития, необходимого при использовании таких сложных устройств, как лазеры, а ценные свойства ЛОС обеспечили им очень широкий круг применений в различных физико-химических исследованиях. Применение ЛОС прежде всего в спектроскопии, фотохимии, в исследованиях селективного воздействия лазерным излучением на вещество привело к возникновению или существенному развитию принципиально новых методов исследования, таких как двухфотонная спектроскопия, свободная от доплеровского уширения, многофотонная резонансная ионизационная спектроскопия, спектроскопия когерентного антистоксова комбинационного рассеяния, внутрире-зонаторная абсорбционная спектроскопия и др. Рассмотрению [c.197]

    В настоящее время исследуется большое число нелинейных оптических взаимодействий высокоинтенсивных лазерных лучей с веществом [113, 114]. Два из них — спектроскопия насыщения и двухфотонное поглощение — уже были рассмотрены. Третьим методом является когерентная антистоксова спектроскопия комбинационного рассеяния ( ARS)—метод смещения четырех волн, который привлек широкое внимание и уже нашел некоторое аналитическое применение. Уникальное свойство ARS состоит в том, что оптический сигнал, испускаемый в результате взаимодействия в образце трех фотонов из двух падающих лазерных лучей, сам по себе является когерентным в пространстве и времени лучом ( четвертой волной ). Таким образом, этот метод обладает геометрическими преимуществами лазерной абсорбционной спектроскопии из-за отсутствия потерь, подчиняющихся закону обратной пропорциональности квадрату расстояния, как в падающем, так и в испускаемом образцом свете. Так, пространственную когерентность испускаемого луча можно использовать для исследования недоступных образцов, например внутренней камеры реактивного двигателя [115]. [c.587]

    Лазеры могут также использоваться для возбуждения в исследованиях комбинационного рассеяния света. Лазерная спектроскопия комбинационного рассеяния (КР) нашла ряд приложений в исследовании промежуточных продуктов фотохимических реакций. Высокая интенсивность и монохроматичность лазерного излучения обеспечивает методу КР чувствительность, которая недоступна с традиционными световыми источниками. Кроме того, появляется возможность изучения промежуточных соединений с временным разрешением. С перестраиваемыми лазерами становится возможной резонансная лазерная спектроскопия (РЛС). Когда длина волны излучения, возбуждающего комбинационное рассеяние, подходит к сильной полосе поглощения исследуемого образца, интенсивность КР увеличивается на шесть порядков по сравнению с обычным, нерезонансным возбуждением. Одним особенно важным вариантом лазерной спектроскопии КР является когерентная антистоксова спектроскопия комбинационного рассеяния (КАСКР), которая зависит от нелинейных свойств системы в присутствии интенсивного излучения и включает смешение нескольких волн. Высокая чувствительность получается вследствие того, что регистрация проводится скорее по люминесцентной, чем по абсорбционной методике. Паразитное рассеяние возбуждающего света ограничивает чувствительность традиционных исследований КР, но в экспериментах по КАСКР вблизи длины волны испускаемого излучения нет возбуждающего излучения, поэтому рассеянное возбуждающее лазерное излучение может быть отфильтровано. [c.197]

    Использование в качестве источников света лазеров в этом методе дает следующие преимущества более высокое спектральное разрешение, а следовательно и чувствительность узость лазерной линии излучения быстрая перестройка частоты излучения и ненужность монохроматора. Наиболее целесообразно в абсорбционной спектроскопии использовать непрерывные лазеры. Однако применяют и импульсные лазеры, так iaK их использование позволяет расширить спектральную область источни а света. Для исследования в ближнем УФ и видимом диапазоне используют лазеры на растворах красителей. В ИК-области спектра широко применяют полупроводниковые диодные лазеры. Существуют нелинейные оптические методы, позволяющие получать излучение с разностной (уз = vj - vj) и суммарной (уз = VI + V2) частотами. Если один из лазеров является перестраиваемым, то можно перестраивать частоту излучения V3 как в УФ-, так и в ИК-областях спектра. [c.116]

    Проведенное исследование позволяет сделать следующие выводы. Лазер в режиме модулированной добротности является эффективным атомизатором. При давлении окружающей атмосферы ниже 400 Па факел представляет собой пространственно однородное, лишь незначительно искаженное на краях, облако поглощаюгцих паров. Контур линии поглощения можно считать чисто доплеровским, так как ло-ренцовские уширение и сдвиг при пониженном давлении незначительны. Высокая температура поглощающих паров ведет к значительному увеличению монохроматичности излучения спектральной лампы. Таким образом, в лазерном факеле при пониженном давлении реализуются все условия атомно-абсорбционных измерений по методу Уолша. [c.73]

    Для оптимизации условий атомно-абсорбционной спектрометрии (ААС) требуется, чтобы факел содержал большое число атомов, способных к поглощению первичного излучения, проходящего через него. Кроме того, результирующие линии поглощения должны быть узкими и не должны смещаться по частоте относительно падающего света. Хорошо известно, что такие условия осуществи.мы в стационарном варианте пла.мен-ной атомно-абсорбционной спектрометрии с помощью щелевой горелки, графитовой печи илп танталовой лодочки. С другой стороны, длительность, температура, а также размер и форма факела, образующегося под де/ктвием лазерного изл) чеиия, по свое природе не слишком благоприятны для атомно-абсорбционных измерений, но можно подобрать такие условия и приемы, при которых возможно использование лазерного факела в аналитических исследованиях, что дает преимущества, недостижимые другими методами. Некоторые из них рассматриваются в данном разделе. [c.85]

    В качестве примера абсорбционной спектроскопии в видимой области спектра с перестраиваемыми лазерами на красителях упомянем измерения линий поглощения NO2 в области 5935 А, проведенные Стевенсом и Заре [108]. Молекулы NO2 возбуждались внутри резонатора узкополосного (ширина полосы 0,035 см- ) перестраиваемого между 5939 и 5941 А импульсного лазера на красителях. Линии поглощения идентифицировали путем заниси спектров флуоресценции с соответствующих верхних уровней. В случае сильного перекрывания спектров спектроскопия возбуждения , т. е. комбинация флуоресцентных и абсорбционных методов измерений, обладает тем преимуществом по сравнению с обычной абсорбционной спектроскопией, что позволяет однозначно идентифицировать линии поглощения с помощью индуцированных лазерным излучением спектров флуоресценции. Эта работа была первым успешным исследованием вращательной структуры в видимом диапазоне крайне сложного спектра NO2. С помощью флуоресцентных измерений было доказано, например, что верхнее состояние имеет симметрию Вг и что равновесная конфигурация этого состояния характеризуется го = 1,31 А и 0о = 111°. [c.270]

    Следует отметить, что за истекшие годы квантовая электроника не только пользовалась результатами этого поиска, по и активно помогала ему. Благодаря развитию квантовой электроники возникло новое направление экспериментальных исследований — спектроскопия стимулированного излучения. Изучение спектроскопических характеристик лазерной генерации активированных соединений является важным донолиепнем к обычным люминесцентным и абсорбционным методам. Значение этих спектроскопических исследований для квантовой электроники и физики твердого тела трудно переоценить. Образно выражаясь, можно сказать, что квантовая электроника начинается за торцами лазерного кристалла. Кристалл для нее — элемент с определенными свойствами. Спектроскопия стимулированного излучения, наоборот, проникает внутрь кристалла, с тем чтобы расшифровать связь между его внутренними (структурными и прочими) свойствами и теми параметрами, которые определяют рабочие характеристики оптического квантового генератора. [c.5]

    Если ранее спектроскопические исследования примесных кристаллических веществ выявили возможности их использования в оптических квантовых генераторах, то, в свою очередь, накопленный опыт по изучению параметров их генерации вылился в новое спектроскопическое направление — спектроскопию стимулированного излучения активированных кристаллов. В комплексе с такилш традиционными методами, как люминесцентный и абсорбционный анализы, это новое спектроскопическое направление в настоящее время широко применяется и для исследования природы разнообразных явлений, протекающих в возбужденных активных средах, и вносит существенную помощь в решение такой важнейшей проблемы, как поиск новых более эффективных генерирующих соединений. Приведенные в книге данные со всей очевидностью свидетельствуют, что спектроскопия стимулированного излучения внесла значительный вклад в раскрытие новых генерационных возможностей и у известных лазерных кристаллов. Удельный вес этого вклада на различных этапах почти 15-летнего развития физики кристаллических ОКГ представлен на рис. 8.1. [c.230]


Смотреть страницы где упоминается термин Лазерные абсорбционные исследования: [c.88]    [c.15]   
Основы и применения фотохимии (1991) -- [ c.195 ]




ПОИСК







© 2024 chem21.info Реклама на сайте