Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометры атомно-абсорбционные

    В атомно-абсорбционной спектрометрии для атомизации пробы используют пламя, электротермическую атомизацию, воздействие мощного лазерного импульса и др. Наиболее старым, но до сих пор, пожалуй, наиболее распространенным является способ атомизации анализируемой пробы в пламени. Пламя представляет собой простой, надежный, дешевый н экспрессный атомизатор для большого числа проб различного состава. Метрологические характеристики (достаточно низкие пределы обнаружения, хорошая воспроизводимость )езультатов) пламенного способа атомизации позволяет широко использовать атомно-абсорбционную спектрометрию для решения большого числа аналитических задач. [c.139]


    Рнс. 8.1. Блок-схема атомно-абсорбционного спектрометра  [c.140]

    Атомно-абсорбционная пламенная фотометрия (атомно-абсорбционная пламенная спектрометрия). Принцип метода состоит и следующем. [c.522]

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Ознакомиться с важнейшими физическими методами элементного анализа атомно-эмиссионной спектрометрией, атомно-абсорбционной спектрометрией, рентгенофлуоресцентной спектрометрией, активационным анализом и неорганической масс-спектрометрией. [c.6]

Рис. 8.17. Количество публикаций по атомно-абсорбционной спектрометрии с атомизацией в пламенах (/) и в ЭТА (2) Рис. 8.17. Количество публикаций по атомно-абсорбционной спектрометрии с атомизацией в пламенах (/) и в ЭТА (2)
    В сборнике рассматриваются микроорганизмы как аналитические индикаторы на цианиды, соли и илиды фосфония. Предложены исследования по газохроматографическому определению состава компонентов газовыделений из лакокрасочных покрытий, синтетического каучука, полиэфирных материалов и др. Публикуются также результаты по масс-спектрометрии, атомно-абсорбционным, фотометрическим методам, а также по экстракционному концентрированию примесей при анализе фенолов. [c.3]

    В практике анализа воздуха на содержание вредных примесей широко применяются методы абсорбционной спектрометрии, флуоресцентные методы, газовая хроматография, атомно-абсорбционная спектроскопия, нейтронно-активационный анализ, ядерный магнитный резонанс, масс-спектроскопия [14]. В промышленных масштабах производятся автоматические газоанализаторы, обеспечивающие непрерывный контроль уровня загрязнения атмосферы [4, 14, 15]. В СССР получили широкое применение газоанализаторы ГПК-1 и Атмосфера , предназначенные для непрерывного контроля содержания 502 в атмосфере и в воздухе производственных помещений. Разработаны специальные методы измерения скорости осаждения пыли, сажи и других аэрозолей [4, И]. Инструментальные методы оперативного контроля загрязненности атмосферы позволяют принимать действенные меры регулирования и ограничения промышленных выбросов в воздух. [c.25]


    В ряде статей опубликованы результаты сравнительного анализа, проведенного методами фотометрии, флуориметрии, эмиссионной спектрометрии, атомно-абсорбционной спектроскопии, рентгеновского флуоресцентного и нейтронно-активационного анализа, вольтамперометрии и полярографии следующих элементов алюминия, бериллия, брома, хрома, германия, ртути, никеля, селена, олова и др. В табл. 62 приведены полученные для различных материалов усредненные результаты анализа, относительные стандартные ошибки и пределы обнаружения. [c.186]

    Последние два-тря десятилетия требования к нижним границам определяемых содержаний элементов в объектах различной природы и назначения постоянно ужесточались. Для решения данной проблемы химики-аналитики мобилизовали разные силы и средства, привлекали идеи и методы других наук. Результатом этого труда явилось внедрение в аналитические лаборатории исследовательского и прикладного профиля таких высокочувствительных методов, как радиоактивационный анализ, различные варианты масс-спектрометрии, атомно-абсорбционной, атомно-флуоресцентной и рентгенофлуоресцентной спектрометрии, наконец, атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой и др. Казалось бы, прямым инструментальным методам все по плечу. Но опыт свидетельствовал велики матричные эффекты и эффекты взаимного влияния элементов вообще, нередко проба без соответствующей обработки просто непригодна для анализа, невозможно найти стандартные образцы состава на все случаи жизни, а новые приборы не всегда и не всем доступны. И здесь исследователи привлекли методы концентрирования микроэлементов, которые позволили в значительной мере ликвидировать сложные ситуации. Более того, в ряде случаев концентрирование расширило пределы применимости инструментальных методов, не обделив при этом и другие мегоды определения. [c.10]

    В атомно-абсорбционной спектрометрии при использовании пламен как атомизаторов имеют место различного рода помехи. [c.158]

    Уточнение данных по ванадию и никелю проводилось методом атомно-абсорбционного анализа на спектрометре фирмы Перкин-Эльмер, модели 503, описанном в разделе 1.2.2. [c.39]

    Часто с цифровой вычислительной машиной в замкнутом контуре комбинируют атомно-абсорбционный или масс-спектрометр. Цифровая вычислительная машина в этом случае позволяет определить, например, соотношение между излучением пробы и эталона, внести корректировку в нелинейные калибровочные кривые и определить среднее значение нескольких измерений. В масс-спектроскопии получают цифровые данные об интенсивности спектров и массовых числах, которые сравнивают с данными карточек спектров для установления структуры или состава молекулы органического вещества. [c.435]

    Как уже упоминалось, атомно-абсорбционная спектрометрия основана на измерении поглощения резонансного излучения с частотой V/ свободными атомами, находящимися в газовой фазе. При этом атомы переходят из нижнего (невозбужденного) состояния с энергией в верхнее (возбужденное) состояние с энергией [c.138]

    На рис. 8.1 приведена простейшая блок-схема атомно-абсорбционного спектрометра. Ряд блоков (источники света, монохроматор, фотодетектор) является общим независимо от способа атомизации пробы. В настоящем разделе рассмотрим после дователь-но все основные компоненты прибора. [c.139]

    Для выполнения закона Бера с высокой точностью полоса пропускания монохроматора должна быть не хуже 10 нм. В этом случае спектральный прибор в области 500 нм должен иметь разрешающую силу = 500/10 3 = 500000. Следует напомнить, что лучшие приборы, выпускаемые отечественной промышленностью, имеют разрешающую силу —120000. Поэтому при использовании источников непрерывного спектра в атомно-абсорбционной спектрометрии необходим монохроматор с очень высокой разрешающей силой, что непригодно для приборов массового применения. [c.142]

    Оптические схемы атомно-абсорбционных спектрометров [c.156]

    Примеры типичных освобождающих, испаряющих и защитных добавок в методе атомно-абсорбционной пламенной спектрометрии [c.161]

    Идея применения электропечей для получения поглощающих сред была впервые реализована еще в начале нынешнего века английским физиком Кингом, который с успехом использовал миниатюрные трубчатые печи для изучения спектров абсорбции разных элементов в вакууме или в атмосфере различных газов. На принципиальную возможность применения печи Кинга для аналитических целей впервые указал австралийский ученый Уолш в 1955 г. Начало практического использования ЭТА в атомно-абсорбционном анализе было положено советским ученым Б. В. Львовым, который в 1959 г. сконструировал первый непламенный атомизатор — графитовую кювету и в 1961 г. опубликовал данные о ее аналитических возможностях. С начала 70-х годов (времени создания первых коммерческих атомно-абсорбциоп-ных спектрометров с ЭТА) наблюдается практически постоянный рост числа публикаций по аналитическому примеиению атомноабсорбционной спектрометрии с ЭТА (рис. 8Т7). [c.164]

    АТОМНАЯ ЭНЕРГИЯ, то же, что ядерная энергия. АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ (атомно-абсорбц. спектрометрия), метод количеств, элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора (см. ниже), пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетич состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера (см. Абсорбционная спектроскопия), мерой концентрации элемента служит оптич. плотность A = g(l jl), где /ц и /-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой. [c.216]


    Для того чтобы измерить изменение импеданса вследствие появления дополнительных заряженных частиц в облучаемом лазером объеме пламени, последний помещают в электрическое поле между двумя электродами. Атомно-ионизационный сигнал в этом случае регистрируют как изменение тока через пламя или напряжения, прикладываемого к электродам. Один из них может находиться в пламени, а в качестве другого может служить насадка на горелку, которая заземляется. К электродам прикладывается напряжение порядка 1—2 кВ. Существуют многочисленные схемы взаимного расположения электродов и горелки, один из которых приведен на рис. 9.2. Следует отметить, что вся конструкция такого атомизатора, как пламя в АИ-методе, подобна конструкции, используемой в методе атомно-абсорбционной спектрометрии. [c.185]

    При проведении измерений на разных уровнях измеряемой величины стандартные отклонения Sn и Sr, п, вообще говоря, не остаются постоянными. Поэтому хорошо отработанной методике измерений должна сопоставляться таблица или график взаимосогласованных пар значений X — S (или Sr.n) для разных уровней измеряемой величины. На рис. XIV. 3 в качестве примера приведена графическая зависимость Sm для оптической плотности D, регистрируемой атомно-абсорбционным спектрометром, от значений D. (Резонансное излучение меди Я, = 327,4 нм, спектрометр AAS = 1, п = 5). Зависимость Sr,n от D показывает, что минимальной относительной погрешности в измерении оптической плотности отвечает интервал 0,3 < D < 0,6. [c.820]

    Анализ исходных материалов и продуктов их переработки на рений проводили с привлечением высокочувствительных физико-химических методов анализа радиофизических (нейтронно-активационного, гамма-активационного), масс-спектрометрии, кинетических, атомно-абсорбционного [c.66]

    Испытания эффективности и качества протекторов ограничиваются в основном аналитическим контролем химического состава сплава, проверкой качества и наличия покрытия на держателе, определением достаточности сцепления между держателем (креплением) и протекторным материалом и контролем соблюдения заданной массы и размеров протектора. Испытания магниевых и цинковых протекторов регламентируются нормативными документами [6, 7, 22, 28]. Аналогичных нормативов по алюминиевым протекторам не имеется. Кроме того, указываются и минимальные значения стационарного потенциала [ 16]. Нормативы по химическому составу обычно представляют собой минимальные требования, которые обычно превышаются у всех сплавов, имеющихся на рынке. К тому же регламентированные в этих документах способы мокрого химического анализа в техническом отношении за прошедшее время устарели. Протекторные снлавы в настоящее время более целесообразно исследовать методами эмиссионного спектрального анализа или атомной абсорбционной спектрометрии (по спектрам поглощения). [c.196]

    В Институте имеются 5 лабораторий физико-химического профиля, которые наряду с самостоятельными научными исследованиями обеспечивают анализом остальные лаборатории с использованием инструментальных методов. Среди них Аналитическая лаборатория, лаборатории физико-химических исследований, хроматографии, спектральных методов исследования, исследований физико-химических свойств полид1еров. Институт оснащен рядом современных приборов и установок, которые в основном сосредоточены в этих подразделениях. В их числе хромато-масс- и масс-спектрометры, атомно-абсорбционный спектрометр, приборы для рентгеиоструктурного анализа, инфракрасной, ультрафиолетовой,, люминесцентной, ЯМР- и ЭПР-спектросконии. [c.16]

    По методу ASTM образец топлива после растворения в соответствующем органическом растворителе сжигают в пламени атомно-абсорбционного спектрометра. Через пламя пропускают световую энергию полой катодной лампы, где часть этой энергии поглощается. Концентрация элемента в растворенном образце прямо пропорциональна измеренной абсорбции. Кальций, свинец, [c.186]

    Осознание важности экологических проблем заставляет исследователей привлекать для контроля суперэкотоксикантов все современные высокочувствительные методы аналитической химии. Так, при определении низких содержаний ионов высокотоксичных металлов в основном применяются методы оптической спектроскопии и люминесценции (атомноэмиссионная спектроскопия с возбуждением от высокочастотного плазменного факела (ИСП-АЭС), атомно-абсорбционная спектроскопия (ААС) с электротермической атомизацией и др.) (3 , а также инверсионная вольтамперометрия (ИВА) с химически модифицнрова1Шыми электродами [41. Для определения органических загрязнителей наряду с хроматографией наблюдается тенденция к более широкому использованию хромато-масс-спектрометрии, иммунохимических и флуоресцентных методов 2,5 Следует заметить, что в области разработки методов контроля за состоянием загрязнения природных сред суперэкотоксикантами имеется много нерешенных проблем В первую очередь это относится к методам экспрессного определения органических веществ. [c.244]

    В атомно-абсорбционном анализе применяют одно-, двух- и многоканальные спектрометры. Для увеличения стабильности работы и уменьшения влияния источников погрешностей измерения на результаты анализа применяют луч сравнения, которым может быть немонохроматический свет от лампы полого катода или какая-нибудь нерезонансная спектральная линия. Чаще используют для этих целей резонансную линию, которую выделяют с помощью осветительной системы (рис. 30.25). Свет лампы полого катода / попадает на светоделитель 2, который разделяет его на два потока одинаковой интенсивности. Один из них проходит через слой атомизированных ионов в ячейке 4. С помощью системы зеркал оба потока могут быть сфокусированы на щель б прибора. Модулятор— вращающееся секторное зеркало 5 — попере- [c.703]

    Лампы с комбинированным разрядом типа ЛК успешно применяются в атомно-абсорбционной и флуоресцентной спектрометрии. Лампы типа ЛК, ЛК-2, ЛК-3 идентичны по принципу работы и отличаются лишь количеством дисковых катодов. Питание ламп осуществляется от источника тина ППСЛ-1 или ППСЛ-2, обеспечивающего непрерывный или импульсный режим на частоте 500 Гц. Основные технические характеристики ламп ЛК приведены в табл. 5 Приложения 4. [c.146]

    Конечная цель теории любого метода анализа—количественно-описать связь аналитического сигнала (в случае атомно-абсорбционной спектрометрии — величины атомного поглощения А) с содержанием определяемого элемеита в пробе (число атомов Л о). Поскольку процесс атомно-абсорбционного анализа с ЭТА включает в общем виде три основные стадии перенос вещества в газовую фазу с поверхности графита (испарение пробы), атомизацию вещества и поглощение света свободными атомами элемента,, полное теоретическое описание фуикциональио "1 связи Л = /(Л о) должно учитывать все перечнелепные стадии. [c.171]

    В 1955 г, австралийский ученый А, Уолш предложил атомно-абсорбциоппую спектрометрию как аналитический метод определения элементов, и в качестве атомизатора пробы им было использовано пламя. Пламя в атомно-абсорбционном методе выполняло функцию не только атомизатора, но и кюветы для пробы, т, е. атомных паров. Поскольку в атомно-абсорбциоппых измерениях соблюдается закон Вера, то, разумеется, чем больше толщина поглощающего слоя (т, е, длина пламени, просвечиваемого источником света), тем выше чувствительность метода. Поэтому [c.148]

    На рис. 8.10 и 8.11 в качестве примеров приведены микроструктуры полей температур в пламенах щелевых горелок, используемых в атомно-абсорбционной спектрометрии. Измерения проводились поперек щели. В пламенах природный газ — воздух и водород—воздух имеется достаточно узкая зона относительно высоких температур, расположенная но оси пламени непосредст- [c.152]

    Атомно-абсорбционная спектрометрия является высокочувствительным методом количествешюго определения более чем 60 металлов и некоторых металлоидов. Ограничение по числу элементов связано с тем, что резонансные линии неметаллов обычно [c.157]

    Атомно-абсорбционная спектрометрия — фармакопейный метод и применяется для открытия (сравнительно редко) или определения (гораздо чаще) тех или иных химических элементов в лечебных средствах, например, примесей щелочных, щелочно-земельных металлов, меди, серебра, свинца в основном нитрате висмута состава 4В1(0Н)2Ы0з В10Ы0з В100Н. [c.523]

    Атомно-абсорбционная спектрометрия — метод атомной абсорбции. Ои основан на измерении поглощения света определе([ной длины волны, излучаемого специальным источником, невозбужденными атомами определяемого элемента. Источник дает так называемое резонансное изJ[yчeниe, т. е. излучение, соответствующее переходу электронов на наинизшую орбиталь с наименьшей энергией с ближайшей к ней орбитали с более высоким уровнем энергии. Кванты света резонансной частоты переводят электроны атомов определяемого элемента в пламени в возбужденное состояние, т. е на ближайший к основному более высокий энергетический уровень. Уменьшение интенсивности света п])и прохождении его через пламя пропорционально количеству невозбужденных атомов в нем. Поэтому п )едел обнаружения в методе атомной абсорбции значительно ниже, чем у двух предыдущих методов анализа. [c.31]

    Современные атомно-абсорбционные спектрометры снабжены мини-ЭВМ и цифропечатными устройствами. Многоканальные приборы типа квантометров позволяют выполнять до 600 определений в час. [c.648]

    Хим. методы К. а. имеют практич. значение при необходимости обнаружения только неск. элементов. Для многоэлементного К. а. применяют физ.-хим. методы, такие как хроматография, электрохим. методы, в осн. полярография, и др. и физические методы, напр, атомно-эмиссионную спектрометрию (см. Спектральный анализ) (предел обнаружения 1 мкг на 1 г твердой пробы или 1 мл р-ра), атомно-абсорбционный анализ (предел обнаружения порядка пикограммов), рентгеноэмиссионный и рентгенофлуоресцентный анализ (см. Рентгеновская спектроскопия) (миним. анализируемый объем 1 мкм , предел обнаружения 10 10 % по массе). [c.360]

    К широко применяют при определении микрокомпонен-тов в объектах окружающей среды, минер, сырье, металлах и сплавах, в-вах высокой чистоты. Наиб, распространение для анализа концентратов получили такие методы, как фотометрия, атомно-эмиссионный, атомно-абсорбционный, рентгенофлуоресцентный и нейтронно-активационный анализ, инверсионная вольтамперометрия. Орг. микрокомпоненты удобно определять газовой и жидкостной хроматографией, хромато-масс-спектрометрией. Для К. газообразующих микроэлементов широко применяют высокотемпературную экстракцию. [c.462]

    Для определения X. используются атомно-абсорбционная спектрометрия, рентгенофлюоресцентный анализ и, особенно, радиоактивационный анализ. [c.309]


Смотреть страницы где упоминается термин Спектрометры атомно-абсорбционные: [c.820]    [c.680]    [c.15]    [c.143]    [c.147]    [c.149]    [c.13]    [c.94]    [c.332]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная спектрометрия

Атомизаторы в атомно-абсорбционной спектрометрии

Атомно-абсорбционная спектрометрия

Атомно-абсорбционная спектрометрия

Атомно-абсорбционная спектрометрия анализ твердых проб

Атомно-абсорбционная спектрометрия вероятность перехода

Атомно-абсорбционная спектрометрия возбужденное состояние атома

Атомно-абсорбционная спектрометрия вычитание фона

Атомно-абсорбционная спектрометрия длина оптического пути поглощения

Атомно-абсорбционная спектрометрия измерение сигнала

Атомно-абсорбционная спектрометрия источники первичного излучения

Атомно-абсорбционная спектрометрия коэффициент поглощения

Атомно-абсорбционная спектрометрия метод дейтериевой лампы

Атомно-абсорбционная спектрометрия модификатор матрицы

Атомно-абсорбционная спектрометрия оптическая плотность

Атомно-абсорбционная спектрометрия основное состояние атома

Атомно-абсорбционная спектрометрия поглощение излучения

Атомно-абсорбционная спектрометрия сила осциллятора

Атомно-абсорбционная спектрометрия спектральные помехи

Атомно-абсорбционная спектрометрия спектрометр

Атомно-абсорбционная спектрометрия спектрометр

Атомно-абсорбционная спектрометрия статистический вес

Атомно-абсорбционная спектрометрия степень поглощения

Атомно-абсорбционная спектрометрия химические помехи

Атомно-абсорбционная спектрометрия чувствительность

Атомно-абсорбционная спектрометрия эффект Зеемана

Бузоверова, Г. Н. Алешин. Определение микроэлементов в нефтях и нефтепродуктах методом атомно-абсорбционной спектрометрии

Совпадения линий элементов в атомно-абсорбционной спектрометрии

Спектрометр атомно-абсорбционный двулучевая система

Спектрометр атомно-абсорбционный дифракционная решетка

Спектрометр атомно-абсорбционный обратная линейная дисперсия

Спектрометр атомно-абсорбционный однолучевая система

Спектрометр атомно-абсорбционный оптические диспергирующие системы

Спектрометр атомно-абсорбционный практическое разрешение

Спектрометр атомно-абсорбционный фокусное расстояние

Сравнение атомно-абсорбционной и пламенно-эмиссионной спектрометрии

Эмиссионная и атомно-абсорбционная пламенная спектрометрия



© 2025 chem21.info Реклама на сайте