Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты для образования сложных эфиров

    Обычные конденсации, например образование сложных эфиров-при взаимодействии спиртов с кислотами, гликолей с одноосновными кислотами, одноатомных спиртов с двухосновными кислотами, к образованию высокомолекулярных соединений не приводят. Для поликонденсаций необходимо, чтобы каждая из реагирующих молекул была по меньшей мере бифункциональна, т. е. содержала бы или две группы —ОН, или две группы —СООН, или —ОН и —СООН. Так, например, гликоль при поликонденсации превращается в полигликоли, оксикислоты—в эстолиды, на что уже указывалось выше. Бифункциональные соединения могут давать лишь длинные линейные молекулы (линейные полимеры). Длину цепей [c.487]


    Исследования, проведенные с твердым фосфорнокислым катализатором, показали, что олигомеризация пропилена при концентрации его свыше 3,1 моль на 20 г катализатора проходит как реакция первого порядка [87]. Опыты с фосфорной кислотой на силикагеле [88] показали, что доля димеров и тримеров увеличивается с повышением содержания воды. Результаты эти истолковываются так на первой стадии происходит отложение пропилена на кислом катализаторе и образование сложных эфиров фосфорной кислоты, которые затем реагируют с пропиленом. В результате образуются ионы карбония, которые присоединяются к другим молекулам олефина или путем отдачи одного протона стабилизируются на анионах фосфорной кислоты при этом выделяются олигомеры. [c.249]

    В промышленности применяется серная кислота крепостью около 98%. В течение реакции концентрация уменьшается, и при достижении 88% добавляется дополнительная порция кислоты. Частично кислота загрязняется благодаря образованию сложных эфиров, но большей частью — из-за дегидрирования олефинов, дающего высоко-непредельные углеводороды, растворимые в кислотах. При разбавлении расходуемой кислоты отделяются тяжелые непредельные фракции, которые, вероятно, по структуре подобны продуктам, полученным из кислотного слоя в комбинированной полимеризации [544]. [c.128]

    Реакци. образования сложного эфира из кислоты и спирта (или фенола) называется реакцией этерификации. Она катализируется ионами водорода и поэтому ускоряется в присутствии минеральных кислот. [c.489]

    По мере дальнейшего окисления топлив расход кислорода и количество адсорбционных смол возрастает в значительно большей степени, чем кислотность топлива, что можно объяснить е столько торможением реакций окисления С образованием кислот, сколько вторичными реакциями этерификации кислот спиртами с образованием сложных эфиров. [c.13]

    Реакционную смесь оставляют на ночь п])и 65° для завершения реакции образования сложного эфира сернистой кислоты, а затем 24 часа кипятят при 90° с обратным холодильником для разложения сложного эфира с отщеплением сернистого ангидрида. [c.195]

    Одна из последовательностей превращений при катализируемом кислотой образовании сложных эфиров была довольно подробно рассмотрена в разд. 13-5, В здесь она будет обсуждена лишь вкратце. Функция кислого катализатора, например концентрированной серной кислоты или сухого хлористого водорода, заключается в протонировании карбонильного кислорода карбонильный атом углерода становится при этом более положительным и более уязвимым к атаке нуклеофильного агента, которым в данном случае является молекула спирта [c.555]


    Даже в самых благоприятных условиях при эквимольном соотношении кислоты и спирта реакция проходит только на 65% [100]. Изучение кинетики и механизма этой реакции [100] показало, что она протекает по бимолекулярному механизму замещения подобно тому, как проходит катализируемое кислотами образование сложных эфиров из спиртов и карбоновых кислот разрыв связн кисло- [c.302]

    Окислением кислородом воздуха в газовой фазе из аценафтена получают нафталевый ангидрид с выходом 75—80% [168]. Хотя последний и может явиться сырьем для получения пластификаторов и алкидных смол, но стерические препятствия и наличие стабильного шестичленного ангидридного цикла серьезно затрудняют образование сложных эфиров. Более целесообразно получать из нафталевого ангидрида 2,6-нафталиндикарбоновую кислоту при нагревании его с карбонатом калия в присутствии солей кадмия и цинка в атмосфере диоксида углерода при 430—460 °С и 2,6—3,1 МПа [135]. [c.109]

    Часть спиртов и карбоновых кислот, содержащихся в нефтепродуктах, взаимодействуют с образованием сложных эфиров. Скорости этерификации в зависимости от химического строения спиртов располагаются в следующий ряд первичные > вторичные > третичные. Отсюда, по-видимому, среди нефтяных кислородных соединений будут встречаться главным образом сложные эфиры первичных спиртов и в меньшем количестве — вторичных спиртов. [c.212]

    Предполагают, что спирты и кислоты образуют сложные эфиры. Кроме того, в конденсационно-полимеризационных процессах, имеющих здесь место, идет образование молекул с большим молекулярным весом и смолистых веществ. Химизм реакции образования таких соединений пока неясен. Частично. окисленные углеводороды, содержащие гидроксил, карбонил и группы карбоновой кислоты, как предельные, так и непредельные, могут взаимодействовать друг с другом. Конечные продукты этих реакций, очевидно, являются очень сложными. [c.71]

    Сернокислотный метод основан на способности изобутилена реагировать с серной кислотой. Эта реакция хорошо изучена еще А. М. Бутлеровым. Взаимодействие изобутилена с серной кислотой идет с образованием сложного эфира серной кислоты и триметилкарбинола, так называемой изобутилсерной кислоты [c.724]

    На рис. 72 показана схема расчета для реакции образования сложного эфира из кислоты и спирта [c.198]

    Низкий выход кислот на поглощенный кислород, очевидно, связан с их участием в процессе этерификации с образованием сложных эфиров карбоновых кислот. Имеет место соответствие между характером изменения оптической плот- [c.158]

    Спирты окисляются в альдегиды или кетоны. Основная масса спиртов реагирует с кислотами с образованием сложных эфиров. [c.266]

    Образование сложных эфиров при совместной дегидратации кислот и спиртов является прекрасной иллюстрацией закона действия масс, так как в равновесной системе [c.467]

    Из многих предложенных теорий образования сложных эфиров заслуживает внимания теория Ф. Уитмора с промежуточным образованием иона карбония РзС+], достаточно хорошо объясняющая роль минеральных кислот как катализаторов. По этой теории карбоновая кислота образует с кислотой-катализатором ионный комплекс [c.472]

    Несмотря на малую концентрацию протонированной формы, присутствие небольших количеств сильных кислот исключительным образом влияет на реакционную способность карбоновых кислот (образование сложных эфиров и др.). Очевидно, большую роль играет также образование водородной связи. [c.545]

    Так как каждая карбоновая кислота должна катализировать собственную этерификацию в той мере, которая соответствует ее силе как кислоты, образование сложного эфира идет уже при простом нагревании кислоты со спиртом. Этот метод имеет наибольшее препаративное значение в следующих случаях при получении моноэфиров дикарбоновых кислот или при образовании неполных эфиров цоликарбоновых кислот, а также при получении сложных эфиров нолигидроксильных соединений, например гликолей и, в частности, глицерина. [c.190]

    Олеиновокислый натрий, помимо его эмульгирующего действия, выполняет при омылении хлористого амила еще одну функцию. Он участвует в реакции двойного обмена хлористого алкила, приводящей к образованию сложного эфира соответствующей жирной кислоты, которая затем быстро омыляется в щелочной среде с регенерацией олеиново -кислой соли и образованием спирта  [c.219]

    Вторичные галоидпроизводные уже при 200—250° частично расщепляются па олефины без промежуточного образования сложного эфира, соответствующего вторичному спирту. При этом образовавшийся хлористый водород, взаимодействуя со стеаратом серебра, тотчас же переходит в галоидное серебро и стеариновую кислоту и не может вызвать никакой изомеризации связей. Дегидрогалоидироваиие такого типа протекает по схеме, не включающей промежуточного образования эфира стеариновой кислоты. Это видно из того, что термическое разложение эфиров стеариновой кислоты и вторичных высших спиртов, взятых в чистом виде, также требует 300—320° [47]. [c.550]


    Присутствуют также и соответствующие спирты, поскольку альдегиды медленно гидрогенизуются. Основными причинами низких выходов являются, однако, конденсация альдегидов и спиртов (кротонизация, ацетализация) [20] и образование сложных эфиров муравьиной и карбоновой кислот по реакции [c.195]

    Карбонильный кислород в кетонах, кислотах и сложных эфирах не только не арепятствует образованию комплексов, но, по-видимому, облегчает комплексообразование, так как окисленные соединения с более короткими углеродными цепями дают комплексы. Ацетон с тремя углеродными атомами в прямой цепи, масляная кислота с четырьмя углеродными атомами и их высшие гомологи образуют комплексы с мочевиной. [c.206]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]

    Эфиры легче всего образуются с олефинами, содержащими третичный углеродный атом (гидролиз этих эфиров ведет к образованию третичных спиртов). Так, например, изобутилен растворяется в 63%-ной серной кислоте при комнатной температуре и атмосферном давлении. При этом образуется моноизобутилсерная кислота (но не диизобутилсерная), которая легко гидролизуется в третичный бутиловый снирт. Спирт может быть выделен путем отгонки с водяным паром пли высаливания сульфатом аммония. Образование сложных эфиров серной кислоты протекает наиболее интенсивно с олефинами Сб—Се [23]. [c.225]

    В качестве экстрактанта был использован бисульфат тетрабутиламмония. В том случае, когда К = СНз, образовывались Z- и -изомеры соединения Н, а при R = eH5 был получен только Z-изомер. В случае 2-меркаптокоричной кислоты (О-кис-лота при R = 6Hs) при действии молярного количества алкилирующего агента вначале происходит 5-алкилирование, после чего можно провести еще одно алкилирование — с образованием сложного эфира [907]. [c.145]

    Дикетен присоединяется к спиртам с образованием сложных эфиров ацетоуксусной кислоты, к ароматическим аминам — с образованием арил-амидов ацетоуксусной кислоты. Присоединение дикетена к ароматическим гидразинам приводит к получению метиларилпиразолонов. Эти соединения используют как промежуточные продукты в производстве красителей, пигментов и химико-фармацевтических препаратов. Все они получаются из дикетена, тогда как раньше приходилось для этого исходить из этилового эфира ацетоуксусной кислоты, который синтезировали из этилацетата по методу Кляйзена. [c.325]

    Например, продуктами гидроформилирования пропена, кроме С -альдегидов и спиртов (н- и зо-бутилового), являются С5-СОЛИ или эфиры муравьиной кислоты, Св-сложные эфиры, альдегиды или спирты, Св-простые эфиры, Сд- эфироальдегиды и эфироспирты и, возможно, (З з-ацетали, образованные путем следующих реакций  [c.195]

    Целлюлоза устойчива к дейстгвию разбавленных щелочей путем комбинированной обработки концентрированными и разбавленными неорганическими кислотами ее можно постепенно расщепить реагирует с концентрированными безводными кислотами с образованием сложных эфиров (эфир с азотной кислотой - нитрат целлюлозы, эфир с уксусной кислотой - ацетат целлюлозы). [c.210]

    Ароматические карбоновые кислоты этерифицируются медленнее, чем алифатические, но реакции можно ускорить введением больших количеств катализатора. В отдельных случаях скорость образования сложных эфиров у ароматических кислот близка к нулю. Зависимость между скоростью реакции и строением кислот изучена достаточно хорошо. Было найдено, что введение заместителей в ароматические кислоты снижает скорость образования сложных эфиров. Наличие заместителя в орто-положении наиболее сильно тормозит реакцию при заместителях в мета- и пара-положении скорость несколько возрастает. На основании экспериментальных исследований было выведено следующее эмпирическое правило метиловые эфиры ароматических кислот не образуются, если в кольце, рядом с карбоксильными группами, стоят заместители Alk, Аг, С1, NO2. NHa, СООН и т. д. Это можно пояснить рядом примеров. Меллитовая кислота (I) совершенно не дает эфира, пиромелли-товая же (II) образует 90% эфира, так как в ней орто-положения свободны  [c.468]

    Реакциями этерификации в широком смысле слова иазывают все процессы, ведуш,не к образованию сложных эфиров. Здесь мы ограничим этот термин только реакциями кислот, их ангидридов и хлораигидридов со спиртами и олефинами, а также некоторыми превращениями сложных эфиров. Все эти превращения имеют важноо практическое значение. [c.203]

    Важнейшей из реакций этерификации является обратимое вза-имоде ктвпе органических или неорганических кислот со спиртами, идущее с образованием сложных эфиров и воды  [c.203]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    Строение карбокй1г1дьной группы и кислотные свойства. Реакции образования сложных эфиров, хлорангидридов, амидов. Свойства бен-золкарбоновых кислот. Хш шческие свойства сложных а иров, ангидридов, хлорангидрвдоЕ и ашщов. [c.195]

    При обработке фенола эквивалентным количеством хлорсульфоновой кислоты при обыкновенной температуре [285] образуется смесь о- и /1-сульфокислот, главным образом последней. При проведении этой реакции в сероуглеродном растворе [286] нри 15 получается только фепилсерная кислота и п-сульфокислота. Медленное приливание хлорсульфоновой кислоты или продолжительное стояние смеси увеличивает выход сульфокислоты. В наиболее благоприятных для образования сложного эфира условиях выход п-сульфокислоты составляет лишь третью часть веса фенола. С избытком фторсульфоновой кислоты при обыкновенной температуре [27 а] с хорошим выходом получается л-сульфофторид. [c.44]

    Во всех опытах принималось, что неоттитрованпая трихлоруксусная кислота идет исключительно на образование сложного эфира с циклогексеном, и по убыли кислоты определялась скорость образования циклогексилового эфира трихлоруксусной кислоты. Совершенно не учитывались другие причины, помимо этерификации, вследствие которых кислота могла убывать из смеси. Чтобы не было сомнений в правильности проведенных опытов и расчетов, изучено постоянство титров трихлоруксусной кислоты в исследованных растворителях при комнатной температуре [80]. [c.53]

    Если катализируемая система и сам катализатор находятся в одинаковом агрегатном состоянии (жидком, паро- или газообразном), катализ называют гомогенным. Примерами последнего могут служить хлорирование метана в присутствии паров хлористого сульфу-рила, образование сложных эфиров из спиртов и карбоновых кислот под действием небольших количеств серной или соляной кислот, реакции кислотного гидролиза и т. д. Если же катализируемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. Примерами гетерогенных каталитических реакций являются синтез метанола или высших спиртов из смесей окиси углерода с водородом над твердыми катализаторами, различные гидро- или дегидрирования, процессы дегидроциклизации, каталитический крекинг, окисление бензола в малеиновый ангидрид или нафталина во фталевый ангидрид и т. д. Гетерогенные каталитические реакции бэлее распространены и имеют большее практическое значение, чем гомогенные. [c.22]

    Процесс окисления углеводородов протекает очень сложно с образованием многочисленных продуктов деструктивного окисления разнообразных классов спиртов, альдегидов, кетонов, карбоновых кислот, оксикислот, сложных эфиров, эфирокислот, лактидов, лактонов, эфиров оксикислот и т. д. По Н. И. Черножукову и [c.219]

    Образование сложного эфира в napiix над твердым катализатором объясняли промежуточным образованием алкоголятов и последующим разложением их кислотами. Например, в случае Al Og реакция должна идти следующим образом [28]  [c.471]


Смотреть страницы где упоминается термин Кислоты для образования сложных эфиров: [c.234]    [c.330]    [c.618]    [c.311]    [c.312]    [c.19]    [c.22]    [c.398]    [c.317]    [c.501]    [c.8]   
Реакции органических соединений (1939) -- [ c.116 ]




ПОИСК







© 2025 chem21.info Реклама на сайте