Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мурамова

    Отметим также аминопроизводное О-глюкозы, этерифицированной по третьему гидроксилу молочной кислотой — мурамовую кислоту, которая в виде М-ацетильного производного входит [c.50]

    Интересным производным 2-амино-2-дезоксисахаров является мурамовая кислота VI. [c.269]

    Эта работа, хотя к настоящему времеии не полностью завершена, показала, что многие птичьи лизоцимы (за исключением, видимо, лизоцима из белка гусиных яиц [4]) весьма близки по химическому строению к лизоциму белка куриных яиц. В итоге, сейчас насчитывают пять линий лизоцимов. К ним относятся лизоцим[)1 из а) яичного белка кур (а также из органов и тканей человека и мыши, которые имеют высокую степень гомологии с лизоцимом белка куриных яиц), б) яичного белка гусей, в) микроскопических грибов, г) бактериофагов, д) растений [4]. Все эти ферменты объединяет то, что они входят в группу 0-гликозидаз и катализируют гидролиз 1,4-р-связи между остатками Ы-ацетил-мурамовой кислоты и Ы-ацетилглюкозамииа в мукополисахаридах и мукопентидах. В дальнейшем, если нет специального указания, речь идет о лизоциме белка куриных яиц. [c.139]


    Через свою карбоксильную функцию мурамовая кислота обычно осуществляет химическую связь с аминокислотами и пептидами, образуя класс пеп-тидогликанов. [c.51]

    Углеводные цепи П. построены из регулярно чередующихся остатков Ы-ацетил-О-глюкозамина и его 3-0-(Л)-1-кар-боксиэтилового эфира (мурамовой к-ты), соединенных р-1-+4-СВЯЗЯМИ. Мурамовая к-та связана пептидной связью с тетра- или пентапептидами, к-рые образуют поперечные сшивки между отдельными углеводными цепями (см. схему). Гигантские сетчатые молекулы П. образуют жесткий чехол вокруг бактериальной клетки, к-рый поддерживает ее форму и защищает клетку от разрушения при мех. и осмотич. воздействиях. К П. ковалентными связями присоединяются др. компоненты клеточной стешп-тейхоевые кислоты и тейхуроновые к-ты, липопротеины. [c.468]

    Углеводные цепи П., выделенных из разл. бактерий, отличаются незначительно. Так, аминогруппы остатков мурамовой к-ты в нек-рых П. могут быть свободны, ацилированы гликолевой к-той нли образуют амидную связь с соседней карбоксильной группой изредка встречается аналог мурамовой к-ты, имеющий О-.и гаю-конфигурацию. Аминогруппы остатков глюкозамина также иногда свободны отдельные гидроксильные группы полимера м. б. ацетилирова-иы илн фосфорилированы. Напротив, пептидные фрагменты П. характеризуются очень сильной изменчивостью известно ок. 100 разл. структур пептидных участков, общими чертами к-рых является обязательное наличие остатков аминокислот D-ряда и присутствие редких диаминокислот (L-гидроксили- [c.468]

    Антибиотики, нашедшие широкое применение в медицине (пенициллины, цефалоспорины, циклосерин и нек-рые др.), блокируют отдельные стадии биосинтеза П. отсутствием П. в клетках эукариот (все организмы, за исключением бактерий и синезеленых водорослей) объясняется избирательность этнх антибиотиков по отношению к бактериальным клеткам. Бактерицидное действие фермента лизоцима обусловлено расщеплением углеводных цепей П. путем гидролиза гликозидных связей остатков Ы-ацетил-О-мурамовой к-ты. [c.468]

    Т.к. клеточных стенок (их содержание может достигать 75% от сухой массы этих стенок) ковалентно связаны с пептидогликанами, причем область связывания представляет собой олигомерное звено, содержап(ее аминосахара и глицерофосфат, но отличающееся по строению от повторяющихся звеньев Т.к. Как правило, ближайшим к пепти-догликану является остаток глюкозамина атом С-1 этого моносахарида связан фосфодиэфирной связью с атомом С-6 остатка мурамовой к-ты пептидогликана, а с др. стороны звена (ближайшей к Т.к.) остаток глицерофосфата фосфодиэфирной связью соединен с остатком полиола Т. к. [c.509]


    Установлено, что первые два соединения участвуют в биосинтезе липидов типа лецитинов. Из нуклеотидных коферментов, содержащих аминокислоты, наиболее изученными являются производные так называемой мурамовой кислоты — уридиндлфосфат Ы-ацетил-З-О-а-карбоксиэтил-глюкозамина (ХХУШд). [c.241]

    В клеточных стенках тейхоевые кислоты ковалентно связаны фосфодиэфирными связями с остатками мурамовой кислоты пеп-тидогл,икана. Было предложено два возможных типа их расположения [412]. Согласно одному из них, цепи пептидогликана расположены перпендикулярно по отношению к внешним концам тейхоевых кислот. В соответствии с этой моделью клеточная стенка состоит из слоя пептидогликана толщиной 10 нм, снаружи от которого находится слой тейхоевых кислот толщиной 12 нм. Согласно другому предположению, цепи пептидогликана ориентированы параллельно поверхности бактериальной клетки. При равномерном распределении связей тейхоевой кислоты с пептидогликаном она оказывается тесно связанной с последним на всем протяжении стенки. [c.395]

    Многие из указанных выше эффектов можно прекрасно проиллюстрировать на примере механизмов связывания и катализа, осуществляемых ферментом лизоцимом. Лизоцим занимает особое место в истории энзимологии, поскольку его трехмерная структура была первой нз структур белков, определенных методом рентгеноструктурного анализа [134]. Это маленький белок, состоящий из одной полипептидной цепи длиной в 129 аминокислотных остатков, катализирует гидролиз гликозидных связей углеводного компонента клеточной стенки бактерий (как часть защитного механизма против бактериальной инфекции). Природным субстратом лизоцима является чередующийся сополимер (86) Л -ацетил-[5-0-мурамовой кислоты (NAM) и Л -ацетил-р-й-глюкоз-амина (NAG), связанных [i-1-> 4-гликозидными связями, однако большая часть работ по изучению механизма была проведена на более простых субстратах. Так, поли-Л -ацетилглюкозамин также гидролизуется ферментом, однако эффективность этой реакции существенно зависит от размера субстрата и трисахарид (NAG)3 фактически является ингибитором лизоцима. Сравнение трехмерных структур фермента и комплекса последнего с (NAG)a показывает, что трисахарид связывается во впадине фермента. Такое сравнение позволяет детально исследовать связывание трех моно-сахаридных звеньев (NAG)a в участках А, В и С фермента, которое осуществляется посредством комбинации гидрофобных рччимодействий и водородных связей. Как отмечалось при об- [c.528]

    Основу клеточной стенки бактерий образует гликопептид му-реин. Этот полимер состоит из N-aцeтплглюкoзaминa, Ы-ацетил-мурамовой кислоты и бактериальных липидов особого состава. В состав пептидов клеточной стенки входят Ь-аланин, О-глута-миновая кислота, мезодиаминопимелиновая кислота или Ь-лизин и В-аланин. Диаминопимелиновая кислота, лизин, а иногда ар- [c.14]

    Мурамовая кислота (2-амиио-3-0-(1-карбок-сиэтил)-2-дезокси-0-глю-коза) [c.133]

    Спиртовые гидроксилы аминосахаров по реакционной способности практически не отличаются от гидроксильных групп обычных моносахаридов и гладко образуют простые и сложные эфиры, изопропилиденовые и бензилиденовые производные, основные методы получения которых подробно рассмотрены в гл. 5. При получении О-производных аминосахаров во избежание осложнений, связанных с наличием аминогруппы, последнюю обычно защищают введением подходящего заместителя чаще всего для этой цели используют ацетильную группу. В качестве примера можно привести синтез мурамовой кислоты VI. Исходным соединением в этом синтезе является Ы-ацетил-а-бензил-О-глюкозаминид, который переводят в 4,6-О-бензилиденовое производное XV. При конденсации бензилиденового производного XV с -хлорпропионовой кислотой реагирует только незамещенная гидроксильная группа при Сд. После снятия защищающих группировок осторожным кислотным гидролизом и гидрогенолизом с высоким выходом образуется N-aцeтилмypaмoвaя кислота XVI, которую переводят в мурамовую кислоту продолжительным гидролизом соляной кислотой  [c.273]

    Нередко приходится прибегать и к более сложной последовательности реакций, включающей оба указанных подхода, как это было сделано в синтезе производного мурамовой кислоты со свободным гидроксилом прп Сб  [c.462]

    Строение мукопептида клеточной стенки выяснено главным образом посредством ферментативного гидролиза мурамидазой, разрывающей гликозидные связи мурамовой кислоты, и специфической амидазой, отщепляющей аминокислоты . После гидролиза мукопептида под действием этих двух ферментов были получены дисахарид и тетрасахарид. С помощью ферментативного гидролиза и периодатного окисления для них было до-7<азано присутствие Р-1,4-гликозидных связей Установлено, [c.583]


    Полисахариды клеточной стенки бактерий. Представителем является мурамин (от лат. тигиз — стенка), неразветвленная цепь которого построена из чередующихся остатков Ы-ацетил-глюкозамина (А) и Ы-ацетилмурамовой кислоты (Б), соединенных между собою Р( 1—>4)-гликозидными связями. Мурамовая кислота представляет собой 0-глюкозамин, связанный простой эфирной связью в 3-м положении с остатком молочной кислоту (лактильным остатком). [c.424]


Смотреть страницы где упоминается термин Мурамова: [c.146]    [c.149]    [c.197]    [c.428]    [c.149]    [c.149]    [c.51]    [c.468]    [c.468]    [c.656]    [c.111]    [c.458]    [c.253]    [c.253]    [c.5]    [c.393]    [c.583]    [c.583]    [c.584]    [c.593]    [c.612]    [c.85]    [c.409]    [c.508]   
Прогресс полимерной химии (1965) -- [ c.80 , c.207 , c.246 , c.354 ]

Прогресс полимерной химии (1965) -- [ c.80 , c.207 , c.246 , c.354 ]




ПОИСК







© 2025 chem21.info Реклама на сайте