Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высота теоретической тарелки ВЭТТ средняя

    Эффективность газо-хроматографических колонок чаще всего выражают числом теоретических тарелок, которое колонка дает при анализе определенного вещества при определенных условиях температуры, скорости газа-носителя и величины пробы. Как будет показано ниже (в гл. V), на работу колонки влияют многие факторы, которые в большинстве случаев оцениваются по их влиянию на число тарелок N или среднюю высоту эквивалентной теоретической тарелки ВЭТТ. Последняя определяется отношением [c.85]


    Смесь пропиленкарбоната и нитрила глутаровой кислоты испытывалась при различной концентрации на хромосорбе с одним и тем же размером частиц, а также при постоянной концентрации на хромосорбе различного зернения. Для каждой колонки были получены графики зависимости высоты, эквивалентной одной теоретической тарелке (ВЭТТ), и средней линейной скорости газа (рис. 1 и 2). Разделение на этих колонках пиков 1-бутен-изобутен, полу- [c.124]

    Число теоретических тарелок зависит от взаимного расположения рабочей и равновесной линий, т. е. от величины движущей силы процесса. При взаимном сближении рабочей и равновесной линии средняя движущая сила процесса уменьшается, а число теоретических тарелок увеличивается. При увеличении расстояния между рабочей и равновесной линиями средняя движущая сила процесса возрастает, что приводит к уменьшению числа теоретических тарелок. Найденное число теоретических тарелок используется для определения высоты контактной зоны аппарата Я или числа реальных тарелок Nд. В первом случае используют высоту контактной зоны Н,, эквивалентную одной теоретической тарелке (ВЭТТ), тогда [c.45]

    График этой зависимости приведен на рис. 9.8, из которого следует, что существует такая скорость потока, при которой наблюдается наибольщая эффективность хроматографической колонки, т. е. высота эквивалентной теоретической тарелки (ВЭТТ) при этой скорости минимальная. В зависимости от скорости потока кривую Ван-Деемтера можно разбить на три участка (рис. 9.8). В области малых скоростей (//) членом Са можно пренебречь, тогда Н В/а. В области средних скоростей (III) ВЭТТ не зависит от скорости потока здесь Н а (область вихревой диффузии). В области больших скоростей (/) Н линейно зависит от а (область диффузии за счет конечности кинетики сорбции). Коэффициенты А, В и С приближенно определяют графически и более точно — методом наименьших квадратов. [c.230]

    Основная кинетическая характеристика процесса - высота к, эквивалентная теоретической тарелке (ВЭТТ). Эта величина соответствует высоте слоя сорбента, ири прохождении которого акт сорбции-десорбции совершается в среднем один раз. Она отражает, но существу, качество используемого сорбента, качество занолнения колонки и правильность выбора режима хроматографирования. Для оценки качества колонки применяется обратная величина - число теоретических тарелок Н  [c.5]


    Число теоретических тарелок п, соответствующее данной колонке, не является достаточной характеристикой хроматографического разделения, поскольку это число не зависит от размеров разделительной системы (длины колонки), в связи с этим высоту, эквивалентную теоретической тарелке (ВЭТТ), можно определить как толщину сорбционного слоя, необходимую для того, чтобы раствор, поступивший из предыдущего слоя, пришел в равновесие со средней концентрацией растворенного вещества в подвижной фазе этого слоя. Такая характеристика лучше определяет эффект хроматографического разделения. Таким образом, эффективность хроматографической системы с использованием набивных хроматографических колонок описывается величиной ВЭТТ  [c.20]

    При исследованиях отбирали пробы жидкой фазы из куба колонны (Хк), из средней части колонны (Хс) и линии флегмы (лгф). Варьировали нагрузки колонны по паровой и жидкой фазам и концентрацию исходной смеси. Используя результаты анализа состава проб и данные по равновесию, по общепринятой методике определяли число теоретических тарелок, соответствующее достигнутой четкости разделения. Зная высоту исследуемой насадки, определяли высоту, эквивалентную теоретической тарелке (ВЭТТ). Результаты исследований представлены на рис. 23 и 24. [c.101]

    Н — среднее значение ВЭТТ (высоты эквивалентной теоретической тарелки). [c.17]

    ВЭТТ)" — минимальная средняя высота, эквивалентная одной теоретической тарелке, соответств ющая объему пробы ,Кт- [c.67]

    Кинетика процесса также объяснена с помощью высоты эквивалентной теоретической тарелки или ВЭТТ. Эта тарелка определяется как высота слоя, из которого выходит поток жидкости, находящийся в равновесии со средним составом твердой фазы 127, 28]. Недостатки таких теоретических представлений при описании уплотненного слоя привели к тому, что они редко используются и в других процессах [41]. [c.76]

    Зная число теоретических тарелок, приходящееся на колонку, и длину колонки L (мкм), а также средний диаметр зерна сорбента Ьс (мкм), легко получить значения высоты, эквивалентной теоретической тарелке (ВЭТТ), а также приведенной высоты, эквивалентной теоретической тарелке (ПВЭТТ)  [c.9]

    В разд. 4.2.1 уже говорилось, что адсорбенты, применяемые в ЖХВД, отличаются от адсорбентов, предназначенных для обычной хроматографии, структурой, а также размером и формой частиц. Адсорбенты для ЖХВД можно разделить на две большие группы поверхностно-пористые и полностью пористые. Поверхностно-пористые адсорбенты получают следующим образом на твердые, непористые, сферические ядра наносят пористый слой собственно адсорбента толщиной 1—2 мкм (см. разд. 4.2.1 и рис. 4.1,6). Благодаря такому строению все типы этих адсорбентов-носителей — шарики с регулируемой поверхностной пористостью, шарики, покрытые пористыми слоями, шарики, покрытые пленкой,— достаточно прочны и не разрушаются при высоких давлениях, применяемых при хроматографическом разделении. Хотя глубина адсорбционного слоя у таких адсорбентов значительно уменьшена, в адсорбентах типа корасил (табл. 4.7) имеется довольно много очень маленьких пор, что значительно расширяет адсорбционную зону, а производительность колонки сильно зависит от скорости течения. Ввиду относительно малой величины адсорбционной поверхности (1— 15 м /г) в такие колонки нельзя вводить пробы большого объема, так как перегрузка колонки приводит к снижению ее разделительной способности. Средняя емкость колонки — порядка 0,1 мг пробы на 1 г адсорбента. Малая емкость является недостатком, если используются малочувствительные детекторы, например рефрактометр. Однако сильнополярные вещества, вероятно, лучше разделяются на адсорбентах этого типа, потому что их легче можно элюировать. Кроме того, колонки с такими адсорбентами легче приготовить, подвижная фаза легче проникает в эти адсорбенты, в результате повыщается средняя скорость течения (но одновременно снижается высота, эквивалентная теоретической тарелке, ВЭТТ). На этих адсорбентах можно как и на адсорбентах других типов, закреплять жидкие фазы и использовать их также для жидко-жидкостной хроматографии. В табл. 4.7 дан список некоторых адсорбентов вместе с их характеристиками. [c.177]

    На основе значений коэффициента сопротивления массопередаче уравнения Ван-Деемтера, которые можно рассчитать, используя данные по зависимости высоты, эквивалентной теоретической тарелке (ВЭТТ), от скорости потока газа-носителя, были получены значения эффективной толщины пленки НЖФ- Для сорбента, содержащего 3 % вакуумной смазки, нанесенной на целит или стер-хамол, эффективная толщина пленки, по данным кинетических измерений, составляет 9—10 мкм. Средняя толщина пленки, рассчитанная в предположении равномерного покрытия жидкой фазой всей поверхности ТН, составляет всего около 0,1 мкм. Существенно большее (в 100 раз) значение эффективной толщины пленки НЖФ, найденное из кинетических измерений по уравнению Ван-Деемтера, свидетельствует, по-видимому, в пользу того, что значительная часть НЖФ находится в мелких порах. Такой тип неравномерного распределения приводит к резкому увеличению эффективной толщины пленки, а следовательно, к увеличению ВЭТТ. Эту же концепцию разделял и Кейлеманс [68], который отмечал, что прежде всего НЖФ под действием капиллярных сил скапливается в мельчайших порах и отверстиях. С увеличением количества жидкости заполняются поры более крупного размера. В жидкой фазе расстояние, на которое диффундируют молекулы хроматографируемых соединений, равно средней длине капилляра, заполненного НЖФ. [c.16]


    Теоретическая эффективность насадочной коловщы. Эта величина обычно выражается двумя способами 1) высотой, эквивалентной теоретической тарелке (ВЭТТ), и 2) высотой, эквивалентной единице переноса массы (ВЭЕП). Первая величина равна длине секции колонны, которая осуществляет ту же самую степень обогащения, что и теоретическая тарелка. Формулируя это определение в несколько иной форме, можно сказать, что эта величина является высотой насадки, при которой средний пар, покидающий верхнюю, часть колонны, находится в фазовом равновесии со средней жидкостью, покидающей нижнюю часть колонны. Физической интерпретации значения второй величины не существует. Математическое определение ее дается уравнением ) [c.694]

    Ван-Дсе.мтср и сотр. в своей и.звестной работе по теории размывания хроматографических зон в ГЖХ [44] высказали два предположения о возможном распределении НЖФ на твердом носителе 1) НЖФ покрывает поверхность твердого носителя сплошной пленкой одинаковой толщины, 2) НЖФ образует на поверхности твердого носителя пленку различной толщины, причем НЖФ заполняет в основном поры малого диаметра. Величина эффективной толщины пленки НЖФ, рассчитанная иа основании зависимости высоты эквивалентной теоретической тарелки (ВЭТТ) от скорости потока газа-носителя по уравнению Ван-Деемтера для сорбента, полученного путем нанесения 30%-ной вакуумной смазки на целит или стерхамол, составляет 9—10 мкм, а средняя [c.11]

    Представление о тарелке привнесено в хроматографию из теории дистилляции, так как первые наиболее эффективные дистилляци-онные колонны содержали приспособления, названные тарелками. Мартин и Синж [4] предложили представлять хро.матографиче-скую систему как некоторое число воображаемых, или теоретических, тарелок. Число теоретических тарелок N. соответствующее данной колонке, не является достаточной характеристикой хроматографического разделения, поскольку это число не зависит от размеров разделительной системы. В связи с этим высоту, эквивалентную теоретической тарелке (ВЭТТ), можно определить как толщину сорбционного слоя, необходимую для того, чтобы раствор, поступивший из предыдущего слоя, пришел в равиовесие со средней концентрацией растворенного вещества в подвижной фазе этого слоя. Такая характеристика лучше определяет эффект хроматографического разделения. Таким образом, эффективность хроматографической системы описывается величиной ВЭТТ  [c.25]


Смотреть страницы где упоминается термин Высота теоретической тарелки ВЭТТ средняя: [c.587]    [c.20]    [c.20]    [c.20]    [c.220]    [c.49]    [c.220]    [c.63]   
Руководство по газовой хроматографии (1969) -- [ c.403 ]

Руководство по газовой хроматографии (1969) -- [ c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Высота

Тарелка средняя

Тарелка теоретическая

Теоретические тарелки ВЭТТ или

Теоретические тарелки высота



© 2025 chem21.info Реклама на сайте