Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосорб

    На эластомере 5Е-30 (30% на хромосорбе) выполнено разделение каменноугольной смолы [66, с. 267]. Отмечено [83], что при анализе реальных смесей регистрировалось до 29 пиков. В работе [65] на капиллярной колонке (50 мХ Х0,25 мм) при использовании апиезона-Ь и пламенно-ионизационного детектора (хроматограф Хром-2 с изотермическим режимом) удалось зарегистрировать 242 пика и идентифицировать более 80 соединений, включая хризен с т. кип. 440 °С. Зарегистрировано 33 пика веществ с т. кип. до 520 °С. Поправочные коэффициенты для расчета содержания полициклических ароматических углеводородов приведены ниже  [c.138]


    В работе [10, с. 60—63] предложено определять фракционный состав реактивных топлив с помощью газожидкостной хроматографии на хроматографе Цвет с пламенно-ионизационным детектором, работающим в дифференциальном режиме. Прибор позволяет работать как в изотермическом режиме, так и с программированием температуры термостата колонок в линейном режиме со скоростью от 1 до 40 °С в мин. Хроматографическая колонка из нержавеющей стали длиной 1 м наполнена 5% силиконового эластомера SE-30 на хромосорбе R. Газом-носителем служит азот. Нагревание от 50 до 180°С запрограммировано на скорость 5°С в 1 мин, скорость диаграммной ленты самописца 600 мм/ч. Для испытания требуется 20—30 мг топлива. Содержание отдельных фракций определяют по площадям пиков. Истинные температуры кипения этих фракций устанавливают по калибровочным кривым, представляющим собой зависимость температур удерживания смесей индивидуальных углеводородов Се—С от истинных температур кипения, полученных в различных условиях хроматографирования. [c.17]

    По полярности полимерные сорбенты можно расположить в следующий ряд [5[ хромосорб 106 < порапак р < хромосорб 102 < порапак Я хромосорб 105 < порапак N < хромосорб 101 < порапак Р < хромосорб 103 < хромосорб 104. [c.177]

    Сорбент для ГЖХ представляет собой мелкозернистый гранулированный носитель (твердая фаза), на который нанесен слой труднолетучего растворителя (неподвижная фаза). Носитель должен быть по возможности однородно пористым, практически адсорбционно и каталитически инертным по отношению к разделяемым веществам, но в то же время обладать способностью удерживать достаточное количество растворителя. Этим требованиям из наиболее доступных отечественных носителей в наибольшей мере удовлетворяет инзенский диатомитовый огнеупорный кирпич, прокаленный при 1000°С, а также микросферический диатомитовый носитель ТНД-ТС-М, сферохром-1, сферохром-2, динохром-Н, динохром-П, полихром-1 и др. За границей широко распространены целит-545, стерхамол, хромосорб и др. [c.106]

    На колонке с хромосорбом №, содержащим ЬАС-2Р-446 (25 о) и 85%-ную фосфорную кислоту (2%), при 240 °С (газ-носитель — гелий) удалось определить орто-пара изомер дифенилолпропана, соединение Дианина и трис-фенол I. [c.189]

    Все образцы анализировали на хроматографе, снабженном пламенно-ионизационным детектором и капиллярной колонкой со скваланом длина колонки 60 м, диаметр 0,25 мм. Проводили также анализы с использованием набивных колонок и детекторов по теплопроводности. Анализ сырья проводили на колонке, заполненной нитратом серебра и бензилцианидом. Продукты анализировали на набивной колонке (длина 3 м, диаметр 6 мм), заполненной 25% гексатриаконтаном на хромосорбе К. После выхода октанов продували колонку через детектор для определения содержания тяжелых углеводородов (Сд и выше). [c.63]


    В качестве сорбентов использовали неорганические фазы. Так, смесь антрацена и фенантрена анализировали при 270°С на колонке, заполненной хлоридом кальция на хромосорбе или на ИНЗ-600 [79] смеси нафталина, бифенила, аценафтена, аценафтилена, флуорена, фенантрена, антрацена, пирена и флуорантена разделяли на оксиде алюминия, пропитанном раствором едкого натра и хлорида натрия [80] смесь нафталина, бифенила, фенантрена и терфенилов — на сульфате бария при 210—350°С [81]. Успешно проводится количественный анализ технических пе-ковых дистиллятов на хроматографе с пламенно-ионизационным детектором и программированием температуры в интервале 110— [c.137]

    С при скорости подъема 5°С в минуту неподвижная фаза— эластомер 5Е-30 (5%) на хромосорбе Р, колонка длиной Эми диаметром 4 мм. В пековых дистиллятах идентифицировано 23 компонента, составляющих более 50% от массы анализируемого сырья [82]. [c.138]

    Хромосорб 102 Сополимер стирола с дивинилбензолом - 300 - 400 - [c.186]

    Хромосорб 105 Полимер полиароматического типа - 600 - 700  [c.186]

    Хромосорб 106 Сополимер полистирола - 700 - 800  [c.186]

    Борная кислота на хромосорбе [c.178]

    Реакционные газы анализировали на масс-опектрометре. Жидкие продукты исследовали методом газо-жидкостной хроматографии на колонке внутренним диаметром 6 мм и длиной 2,5 м, заполненной хромосорбом W, промытым кислотой и пропитанным 10% SE-30. Разделение н-пропилбензола и кумола проводили на двойной медной колонке диаметром 5 мм первые 3,5 м колонки были заполнены хромосорбом W (размер частиц 0,2—0,25 мм), промытым кислотой и пропитанным 10% бентона 34 10% силиконовой резины Dow orning 550, а последние 1,8 м были заполнены хромосорбом Р (размер частиц 0,2—0,25 мм), промытым кислотой и пропитанным 20% апиезона L. [c.298]

    При наличии литературных данных по индексам удерживания можно проводить качественный анализ без применения индивидуальных веществ. Определяя индексы удерживания вещества, надо исключить адсорбционное влияние твердого носителя. Это влияние особенно велико при хроматографировании полярных веществ на неполярных жидких фазах (образование хвостов, изменение порядка выхода компонентов, изменение времени удерживания). Поэтому необходимо применять наиболее инертные носители, например, широкопористое стекло, широкопористые силикагели, инзенский кирпич, обработанный триметилхлорсиланом, хромосорб и др. Результаты идентификации компонентов, полученные методом Ковача, должны быть про- [c.121]

    Определить удельную поверхность одного из следующих сорбентов и носителей силикагель, активированный уголь, трепел Зикеевского карьера (ТЗК), ИНЗ-600, целит-545, хромосорб-1. [c.206]

    По окончании испытаний анализируют продукты реакции определяют количество бензина в катализате, концентрацию легких углеводородов С1—Ср, и водорода в газе и содержания кокса на катализаторе. Для анализа катализата используют фрактометр 8 с длиной колонки 183 см. Неподвижной фазой служит силиконовая смазка, нанесенная иа хромосорб Ш, а газом-носителем — гелий. Углеводородные газы анализируют в двух хроматографах 9 и 10. В хроматографе 9 определяют содержание водорода и метана. Колонка этого хроматографа заполнена молекулярными ситами, газом-носителем служит азот. В приборе хроматографе 10 определяют углеводороды Сг—Се, используя в качестве неподвижной фазы бутилмалеат, а в качестве газа-носителя — гелий. Анализ катализата проводят на специальном анализаторе углерода. [c.163]

    Первые две фазы наносили на целит 545 (фракция 60—80 меш) в количестве 12 вес% носителя. Карбовакс 20 М наносили на хромосорб W (фракция 80—100 меш) в количестве-5 % веса носителя. Хроматографирование проводили на спиральных колонках из [c.73]

    Другая серия опытов проводилась на универсальном хроматофафе УХ-2 с деаектором по теплопроводности (ток моста детектора 120 мкА), газ-носитель - гелий, скорость потока 40 mV мин, давление на входе колонки 0,12 МПа и на выходе - 0,1 МПа, Колонка заполнялась инертным ност елем (хромосорб W зернением [c.268]

    Твердый носитель — хромосорб зернения 0,250—0,315 мм неподвижная жидкая фаза — полиэтиленгликольсукцииат (15% от массы твердого носителя). [c.199]

    Хроматографирование велось ва колонке 0,75x3 мм, на фазе хромосорб W -iW, с пламенно-иониаационном детектором. Объем пробы 0,03 мкл 20% раствора образца в хлороформе. Анализ проводили в режиме программирования, температура колонки изменялась от 210 до 320°С скорость ленты 0,85 см/мин. [c.69]

    Колонка 7,2 м, диаметр 3 мм, с 1,2,3- Первая колонка служит для отделения 81 трис(Р-цианоэтокси)пропаном на хеза- аренов (бензол элюируется после унде-сорбе АДУ и колонка 3 м, диаметр 2 мм кана), а вторая — для разделения аренов со смесью бентона-245 и вазелинового Се — Са масла, (60 40), на хромосорбе 102°С [c.121]

    Пористые полимерные сорбенты используют для пробоотбора суперэкотоксикантов так же широко, как и активные угли. Они относительно инертны, гидрофобны и имеют достаточно высокую сорбционную емкость. В зависимости от последней их подразделяют на три фуппы с высокой емкостью (карбосфер, хромосорб 102, XAD-7) со средней емкостью (XAD-2, хромосорб 106, порапаки R и S) с низкой емкостью (тенакс G , хромосорбы 104 и 105). В этом случае характеристикой сорбционных свойств служат значения удельных объемов удерживания органических соединений различных классов на данном сорбенте при фиксированной температуре. Большинсгво полимерных сорбентов плохо удерживают воду, что является их достоинством при работе с влажным ]76 [c.176]


    Так, весьма селективным сорбентом по отношению к хлор- и фосфорсодержащим пестицидам, ПХБ, ПХДД, ПХДФ и ПАУ жляется пенополиуретан (ППУ) плотностью 0,021 г/см , известный в быту как поролон. Он относительно дешев, прост в изготовлении, легко меняет свою форму и позволяет производить пробоотбор с высокой скоростью. Малолетучие ХОС почти полностью задерживаются ППУ, в то время как достаточно летучие вещества, например альдрин, сорбируются лишь на 50%. Фосфорсодержащие пестициды поглощаются ППУ на бб-вб /о, а ПХБ - на 70-85%. Блок из пенополиуретана толщиной 15 см способен полностью поглотить примеси ПХБ из 2700 м [32-35]. Для отбора гфоб воздуха на содержание ПХБ в индустриальных зонах используют и ам-берлит ХАО-2 [36,37]. Подобно пенополиуретану и ХАВ-2, хорошими сорбционными свойствами по отношению к ХОС обладают тенакс ОС, хромосорб 102, порапак Я [7]. Подтверждением высокой эффективности указанных сорбентов служат данные, представленные в табл. 5.3, [c.177]

    Среди полимерных сорбентов большинство аналитиков п1 юдпочи-тают тенакс ОС, порапаки и хромосорбы. Как уже отмечалось вьппе, тенакс обладает высокой термической стабильностью, что облегчаег термодесорбцию примесей при извлечении из ловушки. Порапаки имеют большой диапазон полярности. Полимерные хромосорбы подобны порапакам и используются для конценфирования полифункциональных органических соединений кислого и основного характера. Чаще других сорбентов этого типа при пробоотборе применяют хромосорб 102, имеющий наибольшую удельную поверхность и позволяющий извлекать из воз. уха ХОП. [c.177]

    Для сорбции микропримесей из воздуха применяют и полимерные смолы типа ХАВ (амберлиты), причем чаще других - амберлит ХАВ-2, который по свойствам аналогичен хромосорбу 102. Этот сорбент хорошо поглощает нитросоединения и ПХБ. Последние концентрируют также на амберлите ХАВ-7. Особенно широко амберлиты используют для извлечения из воздуха фосфорсодержаищх соединений, плохо удерживаемых активными углями и силикагелями. Степень извлечения этих веществ амберлитами ХАВ-2 и ХАВ-7 составляет 80-100% [c.178]

    В жидкостной распределительной хроматографии используют два основных типа носителей пористые и поверхностнопористые. Пористые носители силикагель, диатомиты (хромосорб) и пористые стекла. Они имеют пористую структуру и большую площадь поверхности. Поверхностно-пористые носители состоят из частиц с непористой, непроницаемой сердцевиной и тонкой пористой оболочкой. При разделении на колонках с поверхностно-пористыми носителями даже при высоких скоростях подвижной фазы можно добиться высокой эффектипности колонки. Но эти носители дороги и имеют низкую емкость. [c.333]


Смотреть страницы где упоминается термин Хромосорб: [c.94]    [c.616]    [c.616]    [c.616]    [c.616]    [c.616]    [c.617]    [c.63]    [c.97]    [c.97]    [c.120]    [c.120]    [c.305]    [c.172]    [c.173]    [c.173]    [c.173]    [c.173]    [c.173]    [c.173]    [c.174]    [c.174]    [c.178]    [c.182]    [c.99]   
Газовая хроматография в практике (1964) -- [ c.34 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.331 ]

Руководство по газовой хроматографии Часть 2 (1988) -- [ c.329 , c.330 , c.343 , c.363 ]

Газовая хроматография в биохимии (1964) -- [ c.431 ]

Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.61 , c.65 , c.78 , c.95 , c.97 , c.112 , c.115 , c.121 ]

Газовая хроматография в практике (1964) -- [ c.34 ]

Методы органического анализа (1986) -- [ c.477 , c.479 ]




ПОИСК







© 2025 chem21.info Реклама на сайте