Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсная система структурирование

    Несмотря на большое количество работ и разнообразие подходов в области реологии структурированных дисперсных систем, пока еще нет удовлетворительной количественной теории, связывающей реологические свойства тел с особенностями их структуры. Чтобы представить, хотя бы упрощенно, процесс образования (появления) структуры в дисперсных системах, обратимся к особенностям седиментационных объемов, отличающим агрегативно устойчивые и неустойчивые системы. [c.374]


    Электрические свойства. Диэлектрическая проницаемость различных нефтей различна, хотя ее значения колеблются в узких пределах [94]. Она зависит от состава и степени дисперсности нефти, температуры, давления, частоты электрического поля, а также от предварительной термической обработки [95], влажности нефти и других условий. Кривая изменения диэлектрической проницаемости с увеличением частоты поля имеет либо экстремальный (характерно для дисперсной системы), либо монотонно убывающий характер. Нефти месторождений Татарии, Башкирии, Мангышлака имеют максимальное значение диэлектрической про- ницаемости при температуре начала их структурирования [86]. Интересно, что такая же закономерность изменения диэлектрической проницаемости характерна для дизельного топлива и газового конденсата. [c.25]

    Связанно-дисперсные системы — гели. В определенных условиях, в результате действия межмолекулярных сил, физических, слабых взаимодействий, коллоидные частицы способны связываться с образованием пространственных структур. Такие структурированные системы получили название гелей. Переход золя в гель зависит от многих факторов  [c.17]

    Аномалия вязкости появляется в результате возникновения в масле кристаллической структуры, свойственной дисперсным системам. Структурированное масло уже не может рассматриваться как ньютоновская жидкость, подчиняющаяся закону, выраженному формулой (1). Увеличение градиента скорости сдвига приводит к разрушению структуры и соответственному уменьшению вязкости. [c.43]

    Для рассматриваемого типа НДС фактором, определяющим устойчивость, является структурно-механический барьер, концепция которого была предложена Ребиндером [17].Он имеет место в дисперсных системах со структурированными межфазными слоями, сформированными в результате адсорбции из раствора ПАВ. [c.27]

    При соизмеримых значениях 62 и 61 нами обнаружен эффект повышенного структурирования прилегающего жидкого слоя в нефтяных дисперсных системах по мере закрепления асфальтенов в граничном слое. [c.67]

    Агрегативная неустойчивость дисперсных систем приводит к коагуляции дисперсной фазы, т. е. слипанию частиц под действием межмолекулярных сил притяжения. В результате слипания частиц в дисперсной системе образуются крупные агрегаты (коагуляты). Эти агрегаты седиментационно неустойчивы и могут выпадать в осадок или всплывать. В промывочных жидкостях, представляющих собой, как правило, концентрированные структурированные системы, разделение фаз не столь явно и визуально не всегда заметно. Поэтому о коагуляционных процессах в них судят по изменению свойств, измеряемых инструментально. [c.71]


    Работы Брукса и Тейлора [15-16] о мезофазных превращениях при термолизе нефтепродуктов послужили очередным толчком для развития физических идей фазового перехода. Эти идеи в основном заключались в рассмотрении возникающих при термолизе структур, напоминающих по ряду свойств традиционные жидкие кристаллы. Акцент в исследованиях нефтепродуктов стал смещаться в сторону изучения их коллоидных свойств и процессов структурирования в жидкой фазе. Было введено понятие нефтяные дисперсные системы . [c.31]

    При оценке остаточного сырья наряду с указанной классификацией следует учитывать, к какой дисперсной системе относится нефтяной остаток. Например, по классификаций [14] сьфье технологических процессов переработки остатков может быть отнесено к неструктурированной (яенаполненной) или структурированной (наполненной) дисперсной системе. Для выявления этого следует знать концентрации наиболее склонных к структурированию компонентов, а также показатели, влияющие на структурно-механические свойства остатков (вязкость, термическая устойчивость, устойчивость против расслоения, седиментация и пр.). [c.12]

    Нефть как структурированная дисперсная система [c.20]

    Формирование сольватного слоя в нефтяных дисперсных системах можно рассматривать как процесс образования дополнительных физических узлов перераспределения межмолекулярных связей в системе. Степень структурированности системы при этом в известном смысле увеличивается, вследствие чего может одновременно [c.41]

    Важно отметить, что после снятия внешнего возмущения, оказываемого на систему, в частности структурированный раствор высокомолекулярных соединений, в ней проходят процессы по восстановлению первоначальной структуры. Такие же процессы происходят и в нефтяных дисперсных системах. [c.60]

    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]

    Область I соответствует образованию структурированных нефтяных дисперсных систем в условиях невысоких температур. Образующиеся при этом в нефтяных дисперсных системах пространственные сетки могут придавать системе тиксотропные свойства. Такие системы малопрочны, но для них характерно наличие предельного напряжения сдвига и ползучесть. [c.62]

    Структурированные дисперсные системы весьма распространены и исследование их свойств имеет большое значение для развития ряда отраслей народного хозяйства, в частности строительства (цементы, бетоны), инженерной геологии (грунты), керамической промышленности (пасты, шликеры), при нефтяном бурении (глинистые суспензии), при изготовлении консистентных смазок (олеофильные системы), синтетических волокон и пластических масс. [c.253]

    Здесь интересно вновь вернуться к процессу структурирования в нефтяной дисперсной системе при различной скорости охлаждения. Если рассматривать этот процесс с точки зрения изменения симметрии системы, то, очевидно, малая скорость позволяет системе приобретать наиболее выгодные энергетически симметричные состояния. В то же время при высоких скоростях охлаждения такие состояния не могут быть достигнуты, так как симметричное упорядочение системы затруднено при пониженных температурах и малой кинетической энергии системы и подвижности ее элементов. Одновременно с этой точки зрения объясняется и факт большей подвижности системы при пониженных температурах в случае быстрой скорости охлаждения, за счет увеличения асимметричности системы. Таким образом, между параметром порядка и симметрией системы существует вполне реальная связь. [c.185]

    Полученные результаты характеризуют растворы ВМС нефти в масле МП-1 как сильно структурированные дисперсные системы. Они обладают четко выраженной аномалией вязкости и низкой прочностью структур. Введение в них сажи приводит к повышению структурообразования. При этом прочность структур в целом повышается. [c.262]

    Растворы полимеров во многом подобны дисперсным системам, хотя и являются молекулярными растворами. Например, они склонны к структурированию. Это сообщает им так называемую структурную вяз-кость, характерной особенностью которой является ее зависимость не только от концентрации раствора, но и от интенсивности движения жидкости. В связи с этим растворы полимеров характеризуются  [c.219]


    Структурно-механическая прочность и агрегативная устойчивость нефтяных дисперсных систем. Одной из основных проблем коллоидной химии нефтей и их фракций является исследование, пространственных структур различного рода в нефтяных дисперсных системах и регулирование разнообразными приемами их механических свойств деформационных и прочностных. Необходимость решения данной проблемы способствовала становлению самостоятельной области коллоидной химии — физико-химической механики нефтяных дисперсных систем. Обобщение значительного эмпирического материала позволило в работе [112] предложить с точки зрения макрореологии (диаграмму изменения структурномеханической прочности с ростом температуры в многокомпонентных нефтяных дисперсных системах (рис. 5). Участок ВГ, имеющий различную ширину в зависимости от строения исследуемой нефтяной системы и вырождающийся в точку для битумов, характеризует ньютоновское поведение в полностью разрушенной структуре, вязкость которой не зависит от скорости сдвига. Точка В отвечает пределу текучести системы. С понижением температуры нефтяная система становится тгересыщенной по отношению к твердым углеводородам, выделение которых из однородного с реологической точки зрения расплава приводит к структурированию системы. На участке БВ взаимодействие формирующихся структурных элементов обуславливает вязкопластическое течение обратимо разрушаемой структуры и наличие предельного напряжения сдвига в точке Б. По мере снижения температуры на этом участке скорость формирования коагуляционных контактов мел ду надмоле- кулярными структурами превышает скорость их разрушения под действием механической нагрузки. В точке Б нефтяная система те- [c.38]

    Все коллоидные и микрогетерогенные дисперсные системы, как мы уже указывали в гл. I, можно разделить на свободнодисперсные и связнодисперсные системы. Если дисперсионной средой является жидкость, то могут быть и переходные системы, отдельные частицы которых связаны друг с другом в рыхлые агрегаты, но не образуют сплошной структуры (структурированные жидкости). Очевидно, подобные агрегаты можно рассматривать как обрывки пространственной сетки, которая по тем или иным причинам не получила полного развития. [c.313]

    Возвратимся к рассмотрению механических свойств твердообразных микро-. гетерогенных и коллоидных систем, об- ладающих истинной упругостью. К таким системам относятся поликристаллические. металлы, самые разнообразные структурированные дисперсные системы, гели, концентрированные растворы мыл, а также высокомолекулярные вещества н их концентрированные растворы, способные проявлять не только упругость, но и высокую эластичность. [c.333]

    Как указывалось в разделе 10.1, дисперсные системы разделяют на две большие группы свободнодисперсные, или неструктурированные, и связнодисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, величины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой. [c.311]

    На рис. 10.18 схематично показаны виды возможных контактов между частицами в структурированных дисперсных системах. Выделяют два, резко различающихся по своим свойствам, типа пространственных структур, названных [c.311]

    Поэтому все дисперсные системы могут быть разделены на две группы 1) бесструктурные системы и 2) структурированные системы, обладающие структурой, охватывающей весь занимаемый ими объем. [c.251]

    Для второй группы, т. е. структурированных дисперсных систем, характерным является развитие в той или иной степени упруго-пластических свойств, связанных с образованием структуры и возможностью изменения агрегатного состояния системы, с переходом в твердое тело. Частицы дисперсной фазы в таких системах связаны межмолекулярными силами в одну общую структуру, распространяющуюся на весь объем, занимаемый дисперсной системой. [c.252]

    Перечисленными аномалиями вязкости не исчерпываются особенности реологических свойств структурированных дисперсных систем. Дисперсные системы, сохраняющие по виду свойства обычных жидкостей, по модулю сдвига и времени релаксации часто приближаются к твердым телам. Например, 0,5%-ный раствор желатины имеет период релаксации 8 10 с, тогда как для канифоли при 55 °С, внешне еще сохраняющей признаки твердого тела, он гораздо меньше т = 5 10 с. Таким образом, даже при небольших концентрациях дисперсной фазы дисперсные системы могут рассматриваться как переходные от жидкостей к твердым телам. [c.431]

    Растворы некоторых высокомолекулярных соединений, особенно природного происхождения, при растворении даже в небольших концентрациях образуют систему, текучесть которых очень низка. В таких системах возможна упругая деформация, и заметная скорость течения обнаруживается лишь при определенном напряжении сдвига. Такие системы называют студнями . По своим механическим свойствам они подобны гелям — структурированным дисперсным системам. Образование студней наблюдается при охлаждении растворов белковых веществ, например желатина. Причины образования студней белковых веществ окончательно не выяснены. Предполагается, что структурирование их растворов происходит в результате взаимодействия гидрофобных частей макромолекул и образования связей между разноименно заряженными группами. [c.224]

    Термодинамическая устойчивость тонких прослоек дисперсионной среды хотя и является более сильным стабилизующим фактором, чем кинетическое действие адсорбционных слоев, однако в ряде случаев она недостаточна для стабилизации дисперсных систем, особенно в водной дисперсионной среде. Как правило, термодинамический фактор достаточен лишь для разбавленных дисперсных систем, так как с ростом концентрации растет число возможных соударений частичек дисперсной фазы. Концентрированные дисперсные системы можно стабилизовать лишь образованием на их частичках гелеобразно структурированных адсорбционных слоев лиофильных коллоидов и полуколлоидов. [c.89]

    При перемешивании структурированная суспензия может превратиться в неструктурированную, т. е. состоящую из отдельных несвязанных одна с другой частиц. Обратимое изотермическое разрушение и восстановление связей между частицами в структурированной дисперсной системе получило название тиксотропш, а сами дисперсные системы с такими свойствами — тиксотропными. Структурированное состояние является характерным для подавляющего числа технических суспензий. [c.146]

    Отличительной особенностью реологии, изучающей закономерности структурирования в дисперсных системах, структурномеханические свойства структурированных систем и их изменений иод влиянием внешних воздействий, является рассмотрение механических свойств на моделях, поведение которых описыва- [c.127]

    Транспорт флюидов по стволу скважины и инертного сырья по. магистральным трубопроводам различается. Под нормальным технологическим режимом эксплуатации скважин подразумеваются усилия, прн которых обеспечиваются наибольшие дебиты нефтяного сырья. Наряду с экстремальными, технологическими факторами (смятие эксплуатационной скважины, ее разрушение, вибрация и т. д.) ограничивают дебит скважины факторы, связанные с физико-химическими свойствами потока, движущегося по сквал сине в условиях изменяющегося давления и температуры. К ним, прежде всего, относятся песчаные пробки, образующиеся в результате скрепления частиц при помоиди вяЛ Сущих компонентов нефти, парафиноасфальтеновые отложения, кристаллогидраты природных газов и т. д. Все эти явления так или иначе связаны с фазообразованием, изменением размеров различных типов элементов структуры дисперсной фазы, динамикой расслоения дисперсной системы и могут быть решены па основе теории регулируемых ММВ и фазовых переходов. По мере перемещения от забоя скважины на дневную поверхность снижаются температура и давление, что ведет к изменению условий равновесия в потоке нефтяного сырья и выпаданию из него парафинов, асфальтенов, воды, песка с образованием структурированных систем на внутренних поверхностях эксплуатационных колонн (осадков, газогидратов). [c.189]

    Для промывки скважин используют дисперсные системы, структура которых является коагуляционной. Наличие коагуляционной структуры в промывочных жидкостях определяет их основные технологические свойства Важной задачей технологии промывочных жидкостей является получение структурированной системы с задаипымн свойствами при минимальном содержании твердой фазы. Добиться этого можно, создавая в системе условия для коагуляции дисперсных частиц преимушественно в дальнем минимуме, например путем повышения потенциала поверхност[[ и увеличения толшины и прочности адсорбциоиио-гпдрат1юго слоя. [c.72]

    Наиболее существенным фактором, влияющим на состояние нефти как дисперсной системы, является температура. Любое образование новой твердой макрофазы в виде отложений на поверхности возможно лишь после возникновения в объеме нефти диспергированной твердой микрофазы /4, 30/. Поэтому при температурах, выше температуры насыщения нефти парафинами, заметных отложений на поверхности оборудования не наблюдается. Опасность образования отложений возникает лишь ниже температуры насыщения, когда образуется твердая микрофаза и нефть превращается в свободнодисперсную систему, в которой дисперсные частицы не связаны друг с другом и способны независимо перемещаться в дисперсионной среде под влиянием броуновского движения или силы тяжести. При дальнейшем снижении температуры, после достижения характерного для каждой нефти ее критического значения, благодаря повышению концентрации дисперсной фазы нефть превращается в связнодисперсную систему - гель, в которой дисперсные частицы связаны друг с другом за счет межмолекулярных сил и образуют своеобразные пространственные сетки, формируя структурные каркасы и превращая нефть в структурированную жидкость. В гелеобразном состоянии дисперсные частицы практически теряют возможность свободно перемещаться внутри системы. Температура гелеобразова-ния является весьма важной технической характеристикой дисперсной системы как минимальная температура, при которой в отсутствии механического воздействия система способна находиться в подвижном состоянии. [c.46]

    Факт наличия процессов структурирования в жидкой фазе при фазовых превращениях в нефтяных дисперсных системах и их важная роль были осознаны и развиты в работах [9,17]. В них детально описываются механизмы и условия образования и развития сложных структурных единиц (ССЕ), состоящих из ядра и сольватной оболочки. При определенных условиях те или иные составляющие нефтепродуктов могут служить ядром ССЕ, которое измегсяел структуру окружающего пространства, создавая тем, самым оболочку, называемую сольватной. Толщина ее может изменяться в широких пределах в зависимости от внещних факторов и растворяющей способности среды, [c.31]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]

    Необходимо хотя бы кратко остановиться на дисперсных системах, в которых структура в обычном смысле этого слойа отсутствует, но у которых наблюдаются некоторые общие свойства с настоящими структурированными системами. К таким системам относятся, например, высококонцентрированные стабилизованные суспензии (пасты), а также осадки, образующиеся в результате седиментацип. [c.322]


Смотреть страницы где упоминается термин Дисперсная система структурирование: [c.361]    [c.361]    [c.309]    [c.337]    [c.435]    [c.150]    [c.64]    [c.68]    [c.14]    [c.310]    [c.157]    [c.292]    [c.133]   
Курс коллоидной химии 1984 (1984) -- [ c.245 ]

Курс коллоидной химии 1995 (1995) -- [ c.269 ]

Курс коллоидной химии (1984) -- [ c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Структурирование

Структурирование в дисперсных системах. Гелеобразованне



© 2025 chem21.info Реклама на сайте