Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость охлаждения

Рис. 5.3. Ветви скоростей охлаждения Рис. 5.3. Ветви скоростей охлаждения

    Время нагрева масла от 10-20 до 100° С, мин. ... Средняя скорость охлаждения масла, град 1ч..... [c.222]

    С. Повышение скорости охлаждения стали до 10 °С/с способствует [c.236]

    Скорость охлаждения суспензии перед 1-й ст. 2,5- 6 3- -7 3- -7 2ч-5 [c.264]

    Если скорость охлаждения превышает критическую скорость [c.161]

    Экспериментальные методы определения реакции стали на термический цикл сварки преследуют цель установления зависимости ме-вду скоростью охлаждения и физико-механическими свойствами стали в зоне термического влияния микроструктура, твердость, показатели механических свойств. А затем по этим данным определяют оптимальные режимы сварки. [c.164]

    Для сосуда любого данного размера и начальной температуры Г о имеется минимальная концентрация реагентов, для которой может иметь место тепловой взрыв. Это показано кривой Сг на рис. XIV. , которая является касательной к кривой скорости охлаждения при температуре Г . Более высокие концентрации всегда являются взрывными, в то время как более низкие концентрации всегда стабильны, хотя для них существует температура воспламенения. [c.377]

    Снижение скорости охлаждения. Это способствует образованию благоприятных структур. [c.199]

    Из-за повышенной склонности к росту зерна при выполнении сварки предпочтительны способы с невысокими погонными энергиями и большой скоростью охлаждения. Режимы сварки не отличаются от общепринятых для всего класса нержавеющих сталей. Подготовка кромок под все виды сварки производится механическим способом, чтобы исключить возникновение зон, снижающих регламентированные свойсгва. [c.259]

    Для иллюстрации сказанного на рис. 15 приведены микрофотографии одного и того же образца парафинового дистиллята, закристаллизованного при различных скоростях охлаждения. Роль скорости охлаждения иллюстрируется весьма наглядно этими микрофотографиями и пояснений не требует. [c.111]

    Предварительную обработку (подогрев) и последующую термическую контролируют по графикам режимов (по данным о температуре нагрева, выдержке и скоростях охлаждения). [c.283]

    Никаких мелкокристаллических игольчатых церезиновых структур, о которых упоминается в некоторых литературных источниках, авторами ни разу для данных фракций в указанных выше условиях ни для каких нефтей получено не было. Структуры с мелкими кристалликами, напоминающими по внешнему виду при рассмотрении в микроскопе штрихи или мнимые иголочки, наблюдались в этих фракциях только при загрязнении их более высококипящими фракциями вследствие нечеткой фракционировки при перегонке или при слишком высокой скорости охлаждения препаратов при микрофотографировании. [c.27]

    При большой скорости охлаждения раствора уменьшение концентрации в нем парафина не будет успевать за снижением его растворимости, и высокая степень пересыщения, при которой может идти новообразование кристаллических зародышей, будет сохраняться более длительное время до тех пор, пока из раствора не выделится достаточное число кристаллов с развитой поверхностью, обеспечивающей в соответствии с уравнением (6. III) такую скорость снижения концентрации парафина, при которой дальнейшее новообразование зародышей сможет, наконец, прекратиться. Следовательно, при высокой скорости охлаждения из раствора выделится большое число мелких кристаллов. [c.111]


    С точки зрения коррозионной стойкости, оптимальное содержание Сг в стали составляет 12-14%. Такой уровень легирования Сг обеспечивае г легкую пассивацию поверхносги во многих агрессивных средах, связанных с производством нефтехимических продуктов. При повышении содержания хрома более 12% коррозионная стойкость практически не увеличивается. Вместе с тем в этом случае имеет место проявление склонности стали к охрупчиванию и снижению прочности в связи с формированием в структуре значительного количества ферритной составляющей. 13-14 %-ные хромистые стали с частичным у-а (М)- превращением относят х мартенситно - феррит-ным. Эти стали известны еще под названием полуферритных. По структуре мартенситно-ферритные стали соответствуют сплавам Ре - Сг. Количество 6- феррита в сталях повышается с увеличением содержания Сг и снижением концентрации углерода. С введением углерода границы существования области у - твердых растворов сдвигаются в сторону более высокого содержания Сг. У 13% - ных хромистых сгалей С < 0,25% термокинетическая диаграмма распада аустенита состоит из двух областей превращения. При температурах выше 600 °С в случае достаточно низкой скорости охлаждения возможно образование ферритной составляющей структуры. Ниже 400 °С при более быстром охлаждении наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита в ка-асдом из указанных температурных ингервалов зависит, главным образом, от скорости охлаждения и содержания углерода в стали. [c.234]

    Величина образующихся кристаллов зависит не только от средней скорости охлаждения раствора, но и от изменений ее в процессе охлаждения. Резкое повышение скорости охлаждения может опять привести к появлению новых центров кристаллизации и образованию мелкой структуры. Для иллюстрации на рис. 16 показана серия последовательных микрофотографий об-- [c.111]

    Скорость осаждения кристаллов зависит от скорости охлаждения топлива, интенсивности его перемешивания, сонцентрации парафиновых углеводородов в топливе, его вязкости и наличия в нем поверхностно-активных веществ [17]. Поверхностно-активные вещества (депрессорные присадки, серу- и кислородсодержащие соединения) препятствуют росту кристаллов парафиновых углеводородов и увеличивают разрыв между температурами начала кристаллизации и застывания. [c.31]

    Скорость охлаждения раствора сырья является одним из нажных параметров процессов депарафин изации и обезмасливания, которая обусловливает микроструктуру кристаллов парафинов. При пысокой скорости охлаждения образуются мелкие кристаллы, сни — [c.258]

    Пргжтикой эксплуа тации установок депарафинизации уста— П0ПЛ0110, что скорость охлаждения наиболее важна на начальной стадии охлаждения, то есть в момент образования первичных центров кристаллизации. При температурах конечного охлаждения, КОГД.1 основная масса парафинов выкристаллизовалась из раствора, скорость охлаждения может быть повышена. [c.259]

    Вследствие малой вязкости раствора сырья в сжиженном проьане скорость охлаждения при пропановой депарафинизации значительно выше, чем при использовании кетоновых растворителей. В процессе охлаждения, особенно остаточного сырья, совместная кристаллизация твердых углеводородов и оставшихся в рафи — нате смолистых веществ приводит к образованию крупных (дендритных) кристаллов, что обеспечивает повышенную скорость их фильтрования. Вследствие высокой растворяющей способности пропарга кратность его к сырью небольшая и составляет от 0,8 1 до 2 1 (об.). [c.267]

    Водород и кислород способствуют образованию пор и микротрещин в металле шва, повышают хрупкость металла. Будучи эвдотермической, реакция повышает скорость охлаждения сварного соединения. [c.90]

    В обычных условиях резки значение скорости охлаждения в зоне т )мического влияния V= 40 "С/с. Оно увеличивается с увеличением то.1щины металла и уменьшается при подогреве разрезаемого метал га. [c.112]

    В процессе сварки имеет место непрерывное охлаждение. Характер структурных превращеий при этом отличается от случая распада аустени га при изотермической выдержке. Все это наглядно иллюстрируется наложением векторов скоростей охлаждения на диатрамму изотермическою распада аустенита (рис. 5.2). [c.160]

    Если V < V, образование закалочных структур исключается, В зоне термического влияния наиболее желательными являются пластичные хорошо обрабатываемые структуры типа перлита и сорбита. Поэтому получение качественных соединений непременно связано с достижением желаемых аруктур в основном регулированием скорости охлаждения.  [c.161]

    Имеются аналитические выражения для расчетного определения скорости охлаждения в зоне т ермического влияния [ 27 ]. Эти формулы получены на основе применения теории распространения тепла при дуговой сварке для различных диапазонов толщин свариваемых металлов. Так, например, для металла толщиной более 25 мм формула имеет вил [c.161]


    Структура формулы предстанляе большой практический интерес дпя определения методов регулирования скорости охлаждения, Пара-меграми регулирования скорости охлаждения мо1 ут быть только  [c.162]

    Ехли скорость охлаждения при комнатной температуре принять за единицу, подогрев при сварке снижаег скорость охлаждения следующим образом  [c.162]

    В зависимости от гемпературы охлаждения, степени переохлаждения, скорости охлаждения феррито - цементитной смеси получается различной степени дисперсности перлит, сорбит, бейнит, троостит. Свариваемость - хорошая, сварка выполняется без применения подогрева. Сварные швы не склонны к образованию горящих и холодных фещин. [c.208]

    Однако легирующие элемеить[ существенно снижают критическую скорость охлаждения. Г[ри их содержании в верхнем пределе и высоких скоростях охлаждения возможно подавление перлитного превращения и появление промежуточных и закалочных структур. [c.210]

    То же правило, что и при сварке высоколегированных хромистых стадей, - для хромоникелевых сгалей нежелателен перегрев, нужна большая скорость охлаждения. [c.254]

    По свариваемости мартенситно-стареющие стали превосходят широко используемые углеродистые легированные стали. Они мало чувствительны к образованию горячих и холодных трещин, обеспечивают повьппенный уровень механических свойстъ сварных соединений в нетермообработанном состоянии и возможность достижения равнопрочности основному мета1шу проведением после сварки старения. Высокая прокаливаемость мартенситно-стареющих сталей предопределяет получение мартенситной структуры независимо от скорости охлаждения после аустенитизации. Повышенное содержание легирующих элементов можег сместить температуру окончания мартенситного превращения ниже комнатной, что обусловит наличие в структуре определенного количества остаточного аустенита. Другой причиной его появления являйся нагрев закаленной стали на температуру, близкую к 600 С, что приводит к обратному а-у-превращению. [c.263]

    Минеральное масло - это многокомпонентная система, застывание которой является сложным и многостадийным процессом, зависящим от взаимодействия отдельных компонентов, их взаимного растворения и др. В минеральном масле при понижении температуры в первую очередь зарождаются и растут кристаллы парафина. С появлением мелких кристаллов масло мутнеет и эта температура называется температурой помутнения loudpoint). В дальнейшем кристаллы парафина растут, соединяются, слипаются и в конечном итоге образуют кристаллический каркас, масло становится неподвижным, желеобразным. Таким образом, температура застывания фактически является температурой желеобразования. Между кристаллическим каркасом масло еще остается жидким и при встряхивании или перемешивании текучесть всей массы масла может частично восстановиться. Такой процесс затвердевания, как специфический процесс кристаллизации, зависит от скорости охлаждения и от термической и механической предыстории масла (низкотемпературного режима, интенсивности и продолжительности принудительного течения, в интервале времени до измерения температуры застывания). Поэтому при определении этой температуры требуется строгое соблюдение предписанной процедуры охлаждения и выдержки жидкости. [c.38]

    Второй причиной условности структурного застывания масла является зависимость самой величины прёдёльногб напряжения сдвига при данной температуре от многих внешних факторов, в частности от условий подготовки образца -масла к испытанию, от техники и способа испытания и дрХ Большую роль играет скорость охлаждения масла, условия приложения к нему смещающих усилий нри испытании и т. д. И только при строгом и разностороннем регламентировании условий онределения предельного напряжения сдвига масла или температуры его структурного застывания данный показатель качества может получить однозначное и воспроизводимое числовое значение. [c.11]


Смотреть страницы где упоминается термин Скорость охлаждения: [c.187]    [c.255]    [c.259]    [c.259]    [c.112]    [c.113]    [c.160]    [c.160]    [c.160]    [c.161]    [c.162]    [c.164]    [c.226]    [c.237]    [c.247]    [c.253]    [c.377]    [c.41]    [c.110]   
Смотреть главы в:

Основы технологии нефтехимического синтеза -> Скорость охлаждения


Реология полимеров (1966) -- [ c.68 ]

Учебник общей химии 1963 (0) -- [ c.336 ]

Тепло- и массообмен в процессах сушки (1956) -- [ c.333 ]




ПОИСК







© 2025 chem21.info Реклама на сайте