Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефтяные остатки

Рис. 1У-17. Поточная схема процесса замедленного коксования нефтяных остатков Рис. 1У-17. <a href="/info/1469383">Поточная схема</a> <a href="/info/3407">процесса</a> замедленного коксования нефтяных остатков

    Процесс замедленного коксования нефтяных остатков состоит из четырех стадий нагрева сырья, непосредственно коксования, охлаждения и разделения смеси паров продуктов коксования. Поточная схема процесса изображена на рис. IV-17. [c.227]

    Смолисто-асфальтеновые вещества в нефтях и нефтяных остатках [c.75]

    Корроаия оборудования при коксовании нефтяных остатков [c.16]

    Экспериментальное определение доли отгона и состава образовавшихся фаз при однократном испарении нефтяных смесей является длительной и дорогой операцией. В то же время описанные выше аналитические методы расчета достаточно трудоемки и требуют обязательного применения ЭВМ. Кроме того, отсутствие во многих случаях полных данных по углеводородному составу нефтяных смесей и особенно нефтяных остатков, а также условность дискретизации сложных нефтяных смесей приводит к тому, что более надежным становится зачастую использование эмпирических методов расчета однократной перегонки по данным истиной или стандартной разгонки. Характерное положение кривых фракционного состава и кривых ОИ обеспечивает при этом достаточно высокую точность определения координат точек кривой ОИ на основе эмпирических методов расчета. [c.66]

    Битумы вырабатываются в основном из тяжелых нефтяных остатков гудронов, мазутов тяжелых нефтей, асфальтов деасфаль— тизации, крекинг — остатков и др. Оптимальным сырьем для производства битумов являются остатки из асфальто — смолистых нефтей нафтенового или нафтено-ароматического основания. Чем выше в нефти отношение асфальтенов к смолам и ниже содержание твер — дь х парафинов, тем лучше качество получаемых из них битумов и проще технология их производства. Нефти, из остатков которых вырабатывают битумы, должны быть хорошо обессолены. Наличие сернистых и других гетеросоединений в сырье не ухудшает товарных свойств битумов. [c.74]

    Производство водорода парокислородной газификацией твердых нефтяных остатков [c.171]

    С начала возникновения идо середины XX века основным назначением этого "знаменитого" в свое время процесса было получение из тяжелых нефтяных остатков дополнительного количества бензинов, обладающих, по сравнению с прямогон — ными, повышенной детонационной стойкостью (60 — 65 пунктов по ОЧММ), но низкой химической стабильностью. В связи с внедрением и развитием более эффективных каталитических процессов, таких, как каталитический крекинг, каталитический риформинг, алкилирование и др., процесс термического крекинга остаточного сырья как бензинопроизводящий ныне утратил свое промышленное значение. В настоящее время термический крекинг применяется преимущественно как про — цесс термоподготовки дистиллятных видов сырья для установок коксования и производства термогазойля. Применительно к тяжелым нефтяным остаткам промышленное значение в со— временной нефтепереработке имеет лишь разновидность этого [c.7]


    Основные закономерности жидкофазного термолиза нефтяных остатков [c.38]

    Влияние качества сырья и технологических параметров на процесс термолиза нефтяных остатков [c.41]

    После выхода в свет учебников Технология переработки не( >ти и газа в трех частях (часть 1, Гуреев И.Л. часть 2, Смидович Е.В часть 3, Черножуков Н.И.) прошло более 20 лет. За это время отечественная и мировая нефтепереработка претерпела значи — тел).ные изменения появились новые высокопроизводительные технологические процессы, в т.ч. процессы глубокой переработки нефтяных остатков широкое применение получили комбинированные технологические установки разработаны и внедрены новые активные и селективные катализаторы возникли новые акологи — ческие требования к качеству нефтепродуктов в области рационального использования нефтепродуктов возникла новая отрасль знаний, названная химмотологией значительно расширились тео— ретические представления по физико-химической сущности не — фтегехнологических процессов изменились государственный и поллтический строй бывшего СССР. В этой связи возникла необходимость подготовки нового учебного пособия, отражающего современный научно-технический уровень развития мировой и отечественной нефтепереработки. [c.7]

    На любом НПЗ при углубленной переработке нефти образуются в больших количествах (около 15-20 % от нефти) твердые при комнатной температуре остатки, такие как асфальты деасфальтизации и гудроны глубоковакуумной перегонки, которые до настоящего времени не находят достаточно квалифицированного применения. Прим енение их, в качестве сырья для получения нетопливных нефтепродуктов таких, как битум, пек, связующее и другие углеродистые материалы, осуществляется в значительно мены шх объемах, чем количество образующихся твердых нефтяных остатков. [c.171]

    По Эдмистеру и Окамото [5, И] кривые строят по температуре 50% отгона и тангенсу угла наклона кривых стандартной разгонки или кривых ИТК. Ниже приведены расчетные графики для построения кривых ОИ при помощи кривых ИТК для нефтяных фртвдяй (рис. 1-29) п остатков перегонки (рнс. 1-30). Ч4эг рие 1-29, а приведена зависимость разности температур 50% отгонов по кривым ИТК и ОИ, а на рис. 1-29, б —зависимоеть между раз-ностью температур произвольных отгонов В и Л % (об.) по кривым ИТК и ОИ для нефтяных фракций. Аналогичные зависимости для нефтяных остатков, перегонка которых производится в вакууме, приведены на рис. 1-30. [c.69]

    Смолисто-асфальтеновые вещества (САВ) концентрируются в тял елых нефтяных остатках (ТНО) — мазутах, полугудронах, гуд-рог ах, битумах, крекинг-остатках и др. Суммарное содержание САВ в нофтях в зависимости от их типа и плотности колеблется от долей прс центов до 45 %, а в ТНО — достигает до 70 % масс. Наиболее богаты САВ молодые нефти нафтено-ароматического и ароматического типа. Таковы нефти Казахстана, Средней Азии, Башкирии, республики Коми и др. Парафинистые нефти — Марковская, Доссорская, Сураханская, Бибиайбатская и некоторые другие — совсем не содержат асфальтенов, а содержание смол в них составляет менее 4 % масс. Ниже приводится содержание асфальтенов и СМС л в некоторых отечественных нефтях (в % масс.)  [c.75]

    Паротурбинные установки эксплуатируются в различных областях техники, на электростанциях, морских и речных судах, в железнодорожном транспорте, в насосных и т.д. Топлива для топок судовых и стационарных котельных установок, а также для промыш — ленных печей (мартеновских и других) получают смешением тяжелых фракций и нефтяных остатков, а также остатков переработки углей и сланцев. Наиболее широко применяют котельные топлива нефтяного происхождения. Качество котельных топлив нормируется следующими показателями вязкость — показатель, позволяющий определить мероприятия, которые требуются для обеспечения слива, транспортировки и режима подачи топлива в топочное пространство. От условий распыливания топлива зависит полнота испарения и сгорания топлива, КПД котла и расход горючего. Величина вязкости топлива оценивается в зависимости от его марки при 50 и 80 °С в °ВУ. Температура вспышки определяет условия обращения с топливом при производстве, транспортировке, хранении и применении. Не рекомендуется разогревать топочные мазуты в открытых хранилищах до температуры вспышки. Основную массу котельных топлив производят на основе остатков сернистых и высокосернисгых нефтей. При сжигании сернистых топлив образуются окислы серы, которые вызывают интенсивную юррозию металлических поверхностей труб, деталей котлов и, что Е едопустимо, загрязняют окружающую среду. Для использования в технологических котельных установках, таких, как мартеновские печи, I ечи трубопрокатных и сталепрокатных станов и т.д., не допускается I рименение высокосернистых котельных топлив. [c.128]

    Нефтяной кокс представляет собой твердый пористый черного цвета продукт глубокого уплотнения нефтяных остатков. По способу получения их подразделяют на коксы замедленного коксования и коксы, получаемые коксованием в периодических кубах крекинговых или пиролизньгх остаточных продуктов переработки нефти. Кс кс широко применяют в различных областях народного хозяй — ст а цветная и черная металлургия, химическая промышленность, производство карбидов, синтетических алмазов, ядерная энергети— ка авиационная и ракетная техника, электро- и радиотехника и др. [c.141]

    Процесс получения нефтяных битумов — среднетем — пературный продолжительный процесс окислительной дегид — роконденсации (карбонизации) тяжелых нефтяных остатков (гудронов, асфальтитов деасфальтизации), проводимый при ап мосферном давлении и температуре 250 — 300 С. [c.8]


    Из анализа вышеприведенных требований к качеству экстра — 1ентов можно констатировать, что практически невозможно реко — иендовать универсальный растворитель для всех видов сырья и для нсех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудро — нов широко применялись и применяются низкомолекулярные ал — каны, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто—асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и N — метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.212]

    Назначение процесса — удаление из нефтяных остатков смолисто-асфальтеновых веществ и полициклических ароматических углеводородов с повышенной коксуемостью и Р1изким индексом вязкости. [c.226]

    В процессах деасфальтизации нефтяных остатков, целевым ь азначением которых является получение максимума сырья для г оследующей глубокой топливной переработки, чаще всего применяют бутан, пентан или их смеси с пропаном, а также легкий бензин. [c.228]

    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значительное влияние на скорость газофазных реакций, на фракционный и групповой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среды. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также моле — кулярной структуры асфальтенов, карбенов и карбоидов. Анализ большого количества экспериментальных данных свидетельствует, что II процессе термолиза нефтяных остатков с повышением давле — ния  [c.43]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Наиболее естественным в ьсинетических исследованиях процессов нефтепереработки является использование так называемых технологических или химических группировок как по исходному сырью, так и по конечным продуктам. Наиболее часто используемый в этих целях прием — это считать за индивидуальное реагирующее вещество отдельные нефтяные фракции, например, бензин, газ, кокс и т.д., или отдельные химические компоненты, например, парафиновые, нафтеновые, ароматические углеводороды бензинов и продуктов каталити — ческого риформинга. Так, в процессах термолиза тяжелых нефтяных остатков Б качестве индивидуальных веществ сырья и продуктов часто принимают масла, смолы, асфальтены, карбены и карбоиды. [c.19]

    Жидкофазный термолиз имеет место в таких термодеструк— тивных процессах нефтепереработки, как термический крекинг, висбрекинг, пекование и коксование тяжелых нефтяных остатков. [c.38]

    В отличие от замедленного коксования термоконтактное коксование (ТКК) яв/лется непрерывным, высокопроизводительным, технологически более универ — са/ьным процессом, позволяющим перерабатывать исключительно разнообразные не1ртяные остатки, такие, как мазуты, гудроны, асфальты, природные битумы (даже угс.льные суспензии) с плотностью 0,94—1,2 г/см и коксуемостью 7 — 50 % масс. Целевым назначением процесса ТКК является получение из нефтяных остатков ди(ггиллятных продуктов, направляемых на последующую каталитическую переработку в высококачественные моторные топлива. [c.76]

    Проведенными за последние два десятилетия специальными (спектральными, микроскопическими идр.) исследованиями (Брукса, Тейлора, Уайта, Хонда, Сюняева З.И. и Гимаева Р.Н.) в продуктах карбонизации органических полимеров, нефтяных и каменноуголь— ных пеков, ароматизированных дистиллятных нефтяных остатков были обнаружены анизотропные микросферические структуры раз — мером 0,1 — 20 мкм, обладающие специфическими свойствами жид — ких кристаллов и получившие название мезофазы. Это открытие име( т исключительно важное научное и практическое значение и позволяет более точно установить механизм жидкофазного термо — лиза нефтяного сырья. Мезофаза представляет собой слоистый [c.39]

    Как уже отмечалось ранее ( 7.1), процесс термического крекинга тяжелых нефтяных остатков в последние годы в мировой нефтепереработке практически утратил свое "бензинопроизводя — ш,ее" значение. В настоящее время этот процесс получил новое назначение — термоподготовка дистиллятных видов сырья для установок коксования и производство термогазойля — сырья для последующего получения технического углерода (сажи). [c.44]

    В нашей стране научно — исследовательские работы в масштабе лабораторных, пилотных и опытно — промышленных установок с испытаншш полученных образцов нефтяных пеков у потребителей проведеньЕ в УНИ (Долматовым Л.В., Сюняевым З.И.), БашНИИ НП (Хайрутдиновым И.Р.) совместно со специалистами НПЗ и отраслевых НИИ (ВАМИ, ГосНИИЭП) идр. Разработанные в результате этих работ треСювания приведены в табл.7.7. Из всех продуктов вяжущими и спекающими свойствами в наибольшей степени обладают нефтяные остатки, ресурсы которых достаточно велики. Так, для получения [c.63]

    При взаимодействии углерода топлива (твердого нефтяного остатка) с газифи — цирующими агентами (О,, Н,0, СО ) при высокой температуре протекают следующие ге ерофазные реакции  [c.172]

    Газогенераторы системы Тексако приняты в качестве основного реакционного аппарата в широко распространенных в последние годы в процессах газификации твердых нефтяных остатков "Покс" с получением водорода для гидрогенизационных пр цессов глубокой переработки нефти, [c.174]

    При небходимости значительного сокращения выпуска котельного топлива на НПЗ и решении проблемы дальнейшего углубления переработки нефти возникает "т ликовая" ситуация с утилизацией твердых нефтяных остатков с неприемлемо высоким для каталитических процессов содержанием металлов. Для эффективной переработки таких отходов более целесообразны некаталитические высокотемпера — ту )ные процессы типа "Покс", в которых "избыток" углерода превращается в дегко перерабатываемые технологические газы. [c.174]

    Можно отметить следующие наиболее важные достоинства процессов парокис — ло родной газификации твердых нефтяных остатков "Покс"  [c.174]

    Пб. Гилрообессеривание высококипящих и остаточных фракций (вакуумных газойлей, масел, парафинов и нефтяных остатков). [c.175]

    IIIb. Глубокий гидрокрекинг дистиллятного сырья (вакуумных гсзойлей) и нефтяных остатков с целью углубления переработки нефти. [c.176]


Смотреть страницы где упоминается термин Нефтяные остатки: [c.228]    [c.212]    [c.222]    [c.36]    [c.38]    [c.44]    [c.64]    [c.107]    [c.171]    [c.172]    [c.174]   
Смотреть главы в:

Производство водорода в нефтеперерабатывающей промышленности -> Нефтяные остатки

Новейшие достижения нефтехимии и нефтепереработки том 9-10 -> Нефтяные остатки


Нефтяной углерод (1980) -- [ c.0 ]

Нефтяной углерод (1980) -- [ c.0 ]

История химических промыслов и химической промышленности России Том 3 (1951) -- [ c.412 ]

Ингибиторы коррозии металлов Справочник (1968) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте