Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сильные электролиты электростатическое взаимодействие

    В разбавленных растворах сильных электролитов и ионов в небольшой степени могут образоваться также свободные комплексы, незаряженные или с незначительным зарядом. В растворах истинных электролитов это ионные пары, удерживаемые в основном электростатическим притяжением, тогда как в растворах потенциальных электролитов— ионные пары и ковалентные молекулы или только последние. Образование ионных пар или ковалентных молекул сопровождается сокращением числа носителей заряда и закон действующих масс справедлив для обоих процессов. Поэтому они одинаково влияют на зависимость проводимости от концентрации электролита. Следовательно, по измерениям зависимости проводимости от концентрации невозможно определить, каким явлением —образованием ковалентных молекул или ионных пар — обусловлено снижение в электролите числа возможных носителей заряда. Трудно ответить на этот вопрос и при помощи методов, основанных на других свойствах растворов (например, осмотических и (потенцио-.метрических параметрах),, которые также зависят от общего электростатического взаимодействия ионов. Однако в ряде случаев два типа ионной ассоциации можно различить путем измерения оптических параметров, поскольку ковалентные связи заметно изменяют оптические свойства растворов. [c.347]


    В теории электролитической диссоциации Аррениуса предполагалось, что ионы в растворах находятся в состоянии беспорядочного движения (подобно газообразному состоянию). Это позволило применить законы, характеризующие газообразное состояние к электролитам. Однако в предположении о беспорядочном распределении ионов в растворе не учитывалось электростатическое взаимодействие между ионами, которое проявляется на достаточно больших расстояниях. В сильных электролитах, например, действие между ионами настолько велико, что в концентрированных растворах возникает тенденция к упорядоченному распределению, аналогичному ионным кристаллам (где каждый ион окружен ионами противоположного знака). Дальнейшие исследования показали, что в реальных растворах средней концентрации распределение ионов в электролите является промежуточным между беспорядочным и полностью упорядоченным. Электростатические силы стремятся создать такое распределение, при котором каждый ион окружен исключительно ионами противоположного знака, но этому противодействует хаотическое движение ионов, приводящее к беспорядочному распределению. В конечном итоге, около каждого иона образуется ионная атмосфера, в которой преобладают ионы противоположного (по сравнению с центральным ионом) знака. [c.60]

    Ионно-электростатическое взаимодействие в черных углеводородных пленках специально не рассматривалось. Это, очевидно, вызвано как тем, что влияние электростатического взаимодействия на устойчивость обычно невелико, так и тем, что теория ДЛФО применима при не очень сильном перекрытии диффузных слоев. В черных углеводородных пленках ситуация как раз противоположна этому. Толщина их так мала, что диффузные слои перекрываются полностью. Другими словами, в черной пленке не успевает возникнуть обкладка диффузного двойного слоя. Если электролит А В растворим как в водной, так и в органической фазе, то условием равновесия будет равенство электрохимических потенциалов в разных фазах (р )  [c.133]

    Для того чтобы понять физический смысл фг-потенциала, рассмотрим вкратце строение двойного слоя [46]. Как уже указывалось, на границе раздела металл — электролит возникает электрический слой, образованный отрицательными или положительными зарядами, имеющимися на поверхности металла, и ионами противоположного знака, располагающимися вблизи электрода в растворе. Не следует, однако, думать, что все ионы обкладки двойного слоя одинаково сильно связаны с поверхностью электрода. Благодаря наличию кинетического движения ионов, с одной стороны, и электростатического взаимодействия между ионами и электродом, —с другой стороны, получается определенное распределение ионов вблизи поверхности электрода. Часть ионов прочно связана с поверхностью, мало подвижна и расположена на близком расстоянии от поверхности (радиус иона). Эта часть ионов образует так называемый плотный или гельмгольцевский слой. Другая часть ионов гораздо слабее связана с поверхностью электрода, более подвижна и простирается на расстояние, превышающее радиус иона. Она образует так называемый диффузный слой, в котором имеется определенное распределе- [c.28]


    Таким образом, ионы, несущие одинаковый заряд, расположены друг от друга дальше, чем разноименные, вследствие чего в рассматриваемой системе силы притяжения превалируют над силами отталкивания. С повышением концентрации раствора ионы будут находиться ближе друг к другу и сила взаимодействия их будет усиливаться. Вследствие этого при пропускании электрического тока через сильный электролит все ионы подвергаются электростатическому торможению и тем в большей степени, чем выше концентрация электролита, что приводит к уменьшению скорости движения ионов. При уменьшении концентрации электро- [c.170]

    Как отмечалось в начале этой главы, коллоидные частицы остаются во взвешенном состоянии неопределенно долгое время благодаря своему чрезвычайно малому размеру. Конечные скорости осаждения частицы приобретают только в том случае, если происходит их агрегация. Будучи взвешены в чистой воде, они не могут агломерировать из-за взаимодействия между сильно диффундированными двойными электростатическими слоями. Однако если в суспензию добавить электролит, двойные электростатические слои сжимаются при добавлении достаточного количества электролита коллоидные частицы могут настолько сблизиться, что под влиянием сил притяжения произойдет их слияние в более крупные агрегаты. Это явление известно под названием флокуляции, а наименьшая концентрация электролита, при которой она происходит, называется порогом флокуляции. [c.155]

    В растворах сильных электролитов (даже в разбавленных растворах) электростатическое взаимодействие между ионами велико и их нужно рассматривать как неидеальные растворы и использовать метод активности. Так, сильный электролит Mv J,Av полностью диссоциирует на ионы  [c.245]

    Слабый электролит в растворе находится в основном в-виде недиссоциированных ковалентносвязанных молекул, и лишь небольшая его часть, соответствующая степени диссоциации, образует ионы. Степень диссоциации слабого электролита мала даже в наиболее разбавленных растворах и резко снижается при повышении концентрации (например,, в 0,001 м растворе уксусной кислоты при 25 °С степень дис- социации равна 0,12, в 0,1 м растворе — 0,014). В растворах сильных электролитов диссоциация полная или почти не отличается от 1, а относительное изменение степени диссоциации при разбавлении раствора невелико. С другой стороны, поскольку в растворах слабых электролитов число ионов значительно ниже из-за малой степени диссоциации по сравнению с числом ионов в растворах сильных электролитов равной концентрации, электростатическое взаимодействие между ионами и его изменение при варьировании концентрации гораздо ниже в растворах слабых, чем в растворах сильных электролитов. Следовательно, зависимость отроводи-мости слабых электролитов от концентрации и температуры раствора определяется главным образом изменением степени диссоциации при варьировании указанных факторов, а электростатическое взаимодействие ионов имеет небольшое значение. Проводимость же разбавленных растворов сильных электролитов вследствие электростатического взаимодействия ионов, в основном зависит от концентрации электролита, а изменение степени диссоциации небольшого числа недиссо-циированных молекул вносит в значение проводимости не более как несущественную поправку. Однако и в растворах слабых электролитов нельзя пренебречь образованием ионных пар, удерживаемых электростатическими силами, хотя их число незначительно по сравнению с недиссоциированными ковалентно связанными молекулами. Эти два процесса невозможно различить по данным измерений проводимости. [c.405]


Смотреть страницы где упоминается термин Сильные электролиты электростатическое взаимодействие: [c.46]   
Теоретическая электрохимия (1959) -- [ c.0 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электролиты сильные



© 2025 chem21.info Реклама на сайте