Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители взаимодействие с недиссоциированными

    Взаимодействие недиссоциированных молекул с растворителями 247 [c.247]

    Обзор экспериментальных данных о взаимодействии недиссоциированных молекул с растворителями [c.247]

    Отсюда следует, что между величиной константы диссоциации и растворимостью соли должна быть прямая пропорциональность. Однако в более общем случае следует учесть энергию взаимодействия недиссоциированных молекул вещества с растворителем. [c.318]


    Таким образом, аммонийные соли в растворе жидкого аммиака ведут себя как кислоты. Реакция нейтрализации в жидком аммиаке сводится к взаимодействию, приводящему к образованию недиссоциированных молекул растворителя  [c.273]

    Из этих уравнений следует, что изменение соотношения в силе катионных кислот под влиянием растворителей можно ожидать в связи с различием в энергии взаимодействия недиссоциированных молекул основания [c.352]

    Свойства растворов электролитов зависят не только эг межионного взаимодействия и от взаимодействия ионов с растворителем, но и от взаимодействия недиссоциированных молекул с растворителем. [c.404]

    Из этих уравнений следует, что изменение соотношения в силе катионных кислот под влиянием растворителей можно ожидать в связи с различием в энергии взаимодействия недиссоциированных молекул основания с растворителем и в связи с различием в энергии взаимодействия дипольных молекул растворителя с ионами основания. [c.664]

    Энергия взаимодействия недиссоциированных молекул ионита с растворителем представляет в этом случае энергию набухания данной формы ионита.. Следовательно, / ол1— шол =" ,— представляет разницу в энергии набухания двух форм ионитов. Величина представляет суммарную энергию набухания как за счет сольватации ионогенных групп, так и за счет сольватации самого ионита. [c.408]

    Поскольку в теории сольвосистем всякая реакция нейтрализации сводится к образованию недиссоциированных молекул растворителя, важнейший результат взаимодействия кислоты с основанием — получение соли — рассматривается как какой-то побочный процесс. [c.241]

    Такое явление можно приписать изменению степени сольватации с увеличением полярности растворителя. В воде соли тетра-этиламмония — сильные электролиты, в гексане они диссоциированы слабо, в нитробензоле значительно сильнее. Переход недиссоциированных исходных веш,еств в диссоциированные с ростом сольватации за счет электростатических взаимодействий, по-видимому, облегчает реакцию. [c.227]

    В настоящее время установлено, что в более концентрированных растворах между заряженными ионами возникает взаимодействие не только электростатического, но и химического порядка. В частности, было установлено, что в концентрированных растворах электролитов в воде (а в неводных растворителях с низкой диэлектрической постоянной и при умеренных концентрациях электролита) возможно образование ионных пар, или ионных двойников. Ионные двойники из положительно и отрицательно заряженных ионов появляются в результате действия чисто кулоновских сил, поэтому они менее прочны, чем недиссоциированные молекулы электролита. Однако связи, удерживающие ионы вместе, достаточно сильны для того, чтобы первоначальные ионы потеряли свою самостоятельность и стали проявлять свойства незаряженных частиц. [c.119]


    Чтобы описать ион-ионное взаимодействие, необходимо знать распределение ионов в растворе и природу сил, действующих между нонами. Поскольку и ионы, и диполи растворителя находятся в хаотическом движении, а ионы могут образовывать ассоциаты, комплексы и недиссоциированные молекулы, то в общем виде задача о распределении ионов оказывается чрезвычайно сложной. Можно предположить, что электролит полностью диссоциирован (а=1), растворитель представляет собой непрерывную среду с диэлектрической постоянной е, а ионы взаимодействуют в нем только по закону Кулона. В этих условиях вопрос о распределении и взаимодействии ионов в растворах электролитов был решен П. Дебаем и Э. Гюккелем (1923). [c.39]

    Физико-химический анализ, оптические и другие методы исследования растворов кислот, оснований и солей в воде, спиртах, кетонах и т. д. показывают, что недиссоциированные молекулы электролитов взаимодействуют с растворителем, образуя с ним одно или несколько непрочных продуктов присоединения определенного состава, находящихся в состоянии диссоциации. Характер взаимодействия между ними находится в точном соответствии с представлениями Менделеева. [c.247]

    В целом материалы этой главы свидетельствуют о том, что недиссоциированные молекулы электролитов, так же как и ионы, взаимодействуют с молекулами растворителей. При взаимодействии образуются продукты присоединения определенного состава, который зависит от природы растворенного вещества и растворителя. Важную роль в образовании этих продуктов присоединения играет водородная связь. Энергия сольватации молекул меньше энергии сольватации ионов и в значительной степени зависит от энергии водородных связей. Изменение энергии молекул при переходе из среды в среду может быть оценено с помощью нулевых коэффициентов активности. [c.264]

    Образование соединений различного состава с недиссоциированными молекулами кислот и оснований не единственная причина дифференцирующего действия растворителей. Не меньшее значение имеет различие в энергии взаимодействия анионов кислот различной природы или катионов основания с различными растворителями. Именно этим объясняется близость [c.292]

    Массообмен между водной и органической фазами зависит также от химических свойств веществ. — он сопровождается разрушением химических связей экстрагируемого вещества с водой и возникновением их в органической фазе. Подавляющее большинство неорганических веществ в водном растворе полностью или частично диссоциированы, а их ионы и молекулы гидратированы. В органической же фазе они находятся в недиссоциированной форме (за исключением случаев, когда используется экстрагент с достаточно большой диэлектрической проницаемостью), но могут образовывать более или менее прочные соединения с органическими растворителями. Химические взаимодействия в экстракционной системе протекают как внутри фаз, так и на границах их раздела. Механизм экстракции зависит от свойств веществ, от их растворимости в водной и органической фазах, от состава последних, от коэффициентов диффузии и др. В большинстве случаев органический растворитель диффундирует в водную фазу (растворяется в ней), взаимодействует с экстрагируемым компонентом и образующееся соединение диффундирует в органическую фазу. Сравнительно более редки процессы, когда экстрагируемый компонент просто диффундирует из водной фазы в органическую, не взаимодействуя с экстрагентом или взаимодействуя с ним в органической фазе, а также на границе раздела фаз. Но возможны случаи совмещенного механизма, когда химическое взаимодействие идет одновременно и внутри жидких фаз, и на границах из раздела. Возможны также случаи взаимодействия экстрагируемого вещества с экстрагентом с образованием веществ, не- [c.316]

    В растворах сильных электролитов не соблюдается закон действия масс. В таких растворах находятся только катионы и анионы растворенного вещества и практически нет недиссоциированных его молекул. Закон действия масс выведен без учета действия сил притяжения и отталкивания между ионами растворенного вещества и молекулами растворителя. Эти силы особенно заметны в растворах сильных электролитов, где все молекулы растворенного вещества диссоциированы на ионы. В них вследствие полной диссоциации молек л наступает сильное электростатическое взаимодействие всех ионов между собой (силы отталкивания и притяжения). [c.34]

    Геометрия взаимодействующих электронных орбиталей при такого типа электрофильной атаке изображена на рис. 10.2, 6. В апротонных растворителях, где НХ находится преимущественно в недиссоциированном состоянии, именно он атакует двойную связь  [c.293]

    Уксусная кислота является дифференцирующим, а аммиак, так же как и вода, нивелирующим растворителем ио отношению к кислотам. Их действие на диссоциацию оснований будет обратным. В ап-ротных растворителях, не сиособны отдавать или воспринимать протон, например в бензоле, кислоты и основания будут находиться в недиссоциированном состоянии. Если, одиако, оии присутствуют совместно, то между ними возможно кислотно-основное взаимодействие. [c.71]


    Хлорангидрид кислоты взаимодействует с электроотрицательным атомом кислорода, а полярные растворители благоприятствуют образованию диссоциированной W-формы енолята. Поэтому в таком растворителе образуется почти исключительно Огранс (.С)-продукт, В ТО время как в бензоле основным является Оцис(2)-продукт (образующийся из недиссоциирован-ной U-формы енолята). [c.202]

    Аналогичные реакции протекают также и в системах с растворителем SO2. Так, например, после внесения соединений тионила SOX2 или сульфитов M2SO3 в жидкий SO2 полученные растворы имеют очень высокую электропроводность. Можно предположить, что в результате их взаимодействия с растворителем появляются катионы S0 + и анионы 80з -. При смешении этих растворов тионил-катиоиы реагируют с анионами SOa с образованием недиссоциированного SO2. За ходом реакции можно проследить, воспользовавшись методами кондуктометрии. Точка эквивалентности реакции [c.390]

    Недиссоциированные молекулы не только взаимодействуют с молекулами растворителей, но и между собой в чистых жидкостях. По меткому выражению 1Предера, чистые жидкости уже суть растворы . Ассоциированы молекулы и в их растворах в инертных растворителях. [c.247]

    Ранее извлечение алкалоидов из растительного сырья проводилось с помощью сильнокислотных катионитов, которые сорбировали из экстракта практически всю сумму алкалоидов, отделяя тем самым алкалоиды от неалкалоидов. Разделение алкалоидов проводилось с помощью химических способов, основанных на различиях в растворимости отдельных алкалоидов при разных pH. Разделение алкалоидов амфотерного характера (алкалоиды, содержащие фенольную группу) от основных достигалось путем сорбции фенольных алкалоидов сильноосновными анионитами. С целью подбора оптимальных условий отделения амфолитов — фенольных алкалоидов коробочек мака — были проведены исследования по изучеттию состояния их в различных растворителях в зависимости от рн, а также по выяснению механизма и установлению количественных характеристик поглощения отдельных форм амфолита анионитом. При изучении состояния морфина в спирто-водных средах было установлено, что в области ра =9—12 он существует в виде катиона, аниона, цвиттериона и недиссоциированного основания [23]. Благодаря кислотной диссоциации амфолита в фазах анионита и раствора на ОН-форме анионита АВ-17 происходит сорбция всех форм морфина [24]. Путем расчета величин констант равновесий сорбции каждой из форм амфолита были установлены оптимальные условия сорбции морфина, являющегося весьма слабой кислотой. Впервые было показано, что наибольшей константой равновесия на АВ-17 характеризуется сорбция катиона морфина, образовавшегося при взаимодействии морфина-основания с полярным растворителем. В результате этих исследований, а также изучения кинетики поглощения каждой из форм морфина анионитом была разработана технология выделения морфина и кодеина из маточных растворов производства морфина из коробочек мака [25, 26]. [c.208]

    Попытка вскрыть причины ионной ассоциации. в растворах впервые была предпринята в начале двадцатых годов В. К. Се-менченко. Он объяснил явление ассоциации кулоновским взаимодействием между противоположно заряженными ионами. Энергия электростатического притяжения таких ионов должна превосходить их тепловую (кинетическую) энергию. Поэтому они образуют фактически новую частицу в растворе, так называемую ионную api/, которая обладает достаточной устойчивостью, чтобы не разрушаться в течение длительного промежутка времени, соударяясь с молекулами растворителя. Ионная пара —это не то же самое, что недиссоциированная молекула, т. е. в ней действуют только чисто электростатические взаимодействия. [c.231]

    Сухие остатки некоторых коллоидных растворов (полученные при осторожном выпаривании) способны вновь образовывать золь при добавлении соответствующего растворителя (дисперсионной среды), т. е. эти коллоидные системы обратимы. Сухие остатки коллоидных растворов, не образующих золь при добавлении дисперсионной среды, называются необратимыми коллоидными системами. Поскольку у обратимых систем дисперсная фаза взаимодействует с жидкой дисперсионной средой и может в ней растворяться, т. е. обладает сродством к ней, Фрейндлих и предложил называть их лиофильными системами. К ним относятся растворы высокомолекулярных соединений белки, нуклеиновые кислоты и т. п. У необратимых систем дисперсная фаза не взаимодействует с дисперсионной средой и, следовательно, не растворяется в ней. Их назвали лиофобными системами. К ним относятся типичные коллоидные растворы золи гидроокиси железа, сернокислого бария и т. п. Если дисперсионной средой служит вода, то системы называются соответственно гидрофильными или гидрофобными. Гидрофильность обусловлена присутствием в молекулах достаточно большого числа гидрофильных групп, которыми могут быть или диссоциированные (ионогенные) R—СООН, R—NH3OH, R— OONa, R—NH3 I, или недиссоциированные (полярные) [c.173]

    При определенных условиях, например когда растворитель обладает малой диэлектрической проницаемостью, создаются условия для электростатического взаимодействия сольватированпых ионов противоположного знака. При этом последние подходят друг к другу на близкое расстояние и образуют так называемую ионную пару,— сложный агрегат, состоящий из двух противоположно заряженных ионов, окрул енных молекулами растворителя, в котором электрические заряды взаимно компенсированы. Такой процесс называется ассоциацией. По своей природе и механизму образования ионные пары не тождественны недиссоциированным молекулам слабых электролитов. [c.259]

    В растворителях двух последних классов возможна как физическая, так и химическая сольватация. Физическая сольватация наблюдается главным образом для недиссоциированных молекул, а также для ионов, недостаточно склонных к образованию координационных связей (многие анионы, катионы большинства щелочных и щелочноземельных металлов — Ыа , К, Са , Ва , органические ионы). В первом случае сольватация обусловлена ван-дер-ваальсовыми и диполь-дипольными взаимодействиями, во втором — ион-дипольными. [c.98]


Смотреть страницы где упоминается термин Растворители взаимодействие с недиссоциированными: [c.333]    [c.202]    [c.552]    [c.94]    [c.174]    [c.181]    [c.291]    [c.611]    [c.18]   
Электрохимия растворов издание второе (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие ион растворитель



© 2025 chem21.info Реклама на сайте